首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loss-of-function mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene are associated with decreased catalytic activity of acid sphingomyelinase (ASM) and are the cause of the autosomal recessive lysosomal storage disorder Niemann-Pick disease (NPD) types A and B. Currently, >100 missense mutations in SMPD1 are listed in the Human Gene Mutation Database. However, not every sequence variation in SMPD1 is detrimental and gives rise to NPD. We have analysed several alleged SMPD1 missense mutations mentioned in a recent publication and found them to be common variants of SMPD1 that give rise to normal in vivo and in vitro ASM activity. (Comment on Manshadi et al. Int. J. Mol. Sci. 2015, 16, 6668–6676).  相似文献   

2.
Background: Types A and B Niemann-Pick disease (NPD) are autosomal-recessive lysosomal storage disorders caused by the deficient activity of acid sphingomyelinase due to mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene. Methods: In order to determine the prevalence and distribution of SMPD1 gene mutations, the genomic DNA of 15 unrelated Iranian patients with types A and B NPD was examined using PCR, DNA sequencing and bioinformatics analysis. Results: Of 8 patients with the p.G508R mutation, 5 patients were homozygous, while the other 3 were heterozygous. One patient was heterozygous for both the p.N385K and p.G508R mutations. Another patient was heterozygous for both the p.A487V and p.G508R mutations. Two patients (one homozygous and one heterozygous) showed the p.V36A mutation. One patient was homozygous for the c.1033–1034insT mutation. One patient was homozygous for the c.573delT mutation, and 1 patient was homozygous for the c.1417–1418delCT mutation. Additionally, bioinformatics analysis indicated that two new p.V36A and p.N385K mutations decreased the acid sphingomyelinase (ASM) protein stability, which might be evidence to suggest the pathogenicity of these mutations. Conclusion: with detection of these new mutations, the genotypic spectrum of types A and B NPD is extended, facilitating the definition of disease-related mutations. However, more research is essential to confirm the pathogenic effect of these mutations.  相似文献   

3.
Pathogenic copy number variations (CNVs) contribute to the etiology of neurodevelopmental/neuropsychiatric disorders (NDs). Increased CNV burden has been found to be critically involved in NDs compared with controls in clinical studies. The 1q21.1 CNVs, rare and large chromosomal microduplications and microdeletions, are detected in many patients with NDs. Phenotypes of duplication and deletion appear at the two ends of the spectrum. Microdeletions are predominant in individuals with schizophrenia (SCZ) and microcephaly, whereas microduplications are predominant in individuals with autism spectrum disorder (ASD) and macrocephaly. However, its complexity hinders the discovery of molecular pathways and phenotypic networks. In this review, we summarize the recent genome-wide association studies (GWASs) that have identified candidate genes positively correlated with 1q21.1 CNVs, which are likely to contribute to abnormal phenotypes in carriers. We discuss the clinical data implicated in the 1q21.1 genetic structure that is strongly associated with neurodevelopmental dysfunctions like cognitive impairment and reduced synaptic plasticity. We further present variations reported in the phenotypic severity, genomic penetrance and inheritance.  相似文献   

4.
Pemphigus is a life-threatening autoimmune disease. Several phenotypic variants are part of this family of bullous disorders. The disease is mainly mediated by pathogenic autoantibodies, but is also directed against two desmosomal adhesion proteins, desmoglein 1 (DSG1) and 3 (DSG3), which are expressed in the skin and mucosae. By binding to their antigens, autoantibodies induce the separation of keratinocytes, in a process known as acantholysis. The two main Pemphigus variants are Pemphigus vulgaris and foliaceus. Several models of Pemphigus have been described: in vitro, ex vivo and in vivo, passive or active mouse models. Although no model is ideal, different models display specific characteristics that are useful for testing different hypotheses regarding the initiation of Pemphigus, or to evaluate the efficacy of experimental therapies. Different disease models also allow us to evaluate the pathogenicity of specific Pemphigus autoantibodies, or to investigate the role of previously not described autoantigens. The aim of this review is to provide an overview of Pemphigus disease models, with the main focus being on active models and their potential to reproduce different disease subgroups, based on the involvement of different autoantigens.  相似文献   

5.
6.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency), and the G6PD Santa Maria and A+ (less severe deficiency) (Class I, II and III, respectively) affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS) fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients.  相似文献   

7.
Large scale genome sequencing allowed the identification of a massive number of genetic variations, whose impact on human health is still unknown. In this review we analyze, by an in silico-based strategy, the impact of missense variants on cancer-related genes, whose effect on protein stability and function was experimentally determined. We collected a set of 164 variants from 11 proteins to analyze the impact of missense mutations at structural and functional levels, and to assess the performance of state-of-the-art methods (FoldX and Meta-SNP) for predicting protein stability change and pathogenicity. The result of our analysis shows that a combination of experimental data on protein stability and in silico pathogenicity predictions allowed the identification of a subset of variants with a high probability of having a deleterious phenotypic effect, as confirmed by the significant enrichment of the subset in variants annotated in the COSMIC database as putative cancer-driving variants. Our analysis suggests that the integration of experimental and computational approaches may contribute to evaluate the risk for complex disorders and develop more effective treatment strategies.  相似文献   

8.
Selenium is incorporated into selenoproteins as the 21st amino acid selenocysteine (Sec). There are 25 selenoproteins encoded in the human genome, and their synthesis requires a dedicated machinery. Most selenoproteins are oxidoreductases with important functions in human health. A number of disorders have been associated with deficiency of selenoproteins, caused by mutations in selenoprotein genes or Sec machinery genes. We discuss mutations that are known to cause disease in humans and report their allele frequencies in the general population. The occurrence of protein-truncating variants in the same genes is also presented. We provide an overview of pathogenic variants in selenoproteins genes from a population genomics perspective.  相似文献   

9.
The challenge of unravelling the molecular basis of multifactorial disorders nowadays cannot rely just on association studies searching for potential causative variants shared by groups of patients and not present in healthy individuals; indeed, association studies have as a main limitation the lack of information on the interactions between the disease-causing variants. Thus, new genomic analysis tools focusing on disrupted pathways rather than associated gene variants are required to better understand the complexity of a disease. Therefore, we developed the Variant Enrichment Analysis (VEA) workflow, a tool applicable for whole exome sequencing data, able to find differences between the numbers of genetic variants in a given pathway in comparison with a reference dataset. In this study, we applied VEA to discover novel pathways altered in patients with complex autoinflammatory skin disorders, namely PASH (n = 9), 3 of whom are overlapping with SAPHO) and PAPASH (n = 3). With this approach we have been able to identify pathways related to neutrophil and endothelial cells homeostasis/activations, as disrupted in our patients. We hypothesized that unregulated neutrophil transendothelial migration could elicit increased neutrophil infiltration and tissue damage. Based on our findings, VEA, in our experimental dataset, allowed us to predict novel pathways impaired in subjects with autoinflammatory skin disorders.  相似文献   

10.
Bartter (BS) and Gitelman (GS) syndrome are autosomal recessive inherited tubulopathies, whose clinical diagnosis can be challenging, due to rarity and phenotypic overlap. Genotype–phenotype correlations have important implications in defining kidney and global outcomes. The aim of our study was to assess the diagnostic rate of whole-exome sequencing (WES) coupled with a bioinformatic analysis of copy number variations in a population of 63 patients with BS and GS from a single institution, and to explore genotype-phenotype correlations. We obtained a diagnostic yield of 86% (54/63 patients), allowing disease reclassification in about 14% of patients. Although some clinical and laboratory features were more commonly reported in patients with BS or GS, a significant overlap does exist, and age at onset, preterm birth, gestational age and nephro-calcinosis are frequently misleading. Finally, chronic kidney disease (CKD) occurs in about 30% of patients with BS or GS, suggesting that the long-term prognosis can be unfavorable. In our cohort the features associated with CKD were lower gestational age at birth and a molecular diagnosis of BS, especially BS type 1. The results of our study demonstrate that WES is useful in dealing with the phenotypic heterogeneity of these disorders, improving differential diagnosis and genotype-phenotype correlation.  相似文献   

11.
Ehlers-Danlos syndromes (EDS) are an inherited heterogeneous group of connective tissue disorders characterized by an abnormal collagen synthesis affecting skin, ligaments, joints, blood vessels, and other organs. It is one of the oldest known causes of bruising and bleeding, and it was described first by Hippocrates in 400 BC. In the last years, multiple gene variants involved in the pathogenesis of specific EDS subtypes have been identified; moreover, new clinical diagnostic criteria have been established. New classification models have also been studied in order to differentiate overlapping conditions. Moreover, EDS shares many characteristics with other similar disorders. Although distinguishing between these seemingly identical conditions is difficult, it is essential in ensuring proper patient care. Currently, there are many genetic and molecular studies underway to clarify the etiology of some variants of EDS. However, the genetic basis of the hypermobile type of EDS (hEDS) is still unknown. In this review, we focused on the study of two of the most common forms of EDS—classic and hypermobile—by trying to identify possible biomarkers that could be of great help to confirm patients’ diagnosis and their follow up.  相似文献   

12.
Pathogenic variants in KCNA2, encoding for the voltage-gated potassium channel Kv1.2, have been identified as the cause for an evolving spectrum of neurological disorders. Affected individuals show early-onset developmental and epileptic encephalopathy, intellectual disability, and movement disorders resulting from cerebellar dysfunction. In addition, individuals with a milder course of epilepsy, complicated hereditary spastic paraplegia, and episodic ataxia have been reported. By analyzing phenotypic, functional, and genetic data from published reports and novel cases, we refine and further delineate phenotypic as well as functional subgroups of KCNA2-associated disorders. Carriers of variants, leading to complex and mixed channel dysfunction that are associated with a gain- and loss-of-potassium conductance, more often show early developmental abnormalities and an earlier onset of epilepsy compared to individuals with variants resulting in loss- or gain-of-function. We describe seven additional individuals harboring three known and the novel KCNA2 variants p.(Pro407Ala) and p.(Tyr417Cys). The location of variants reported here highlights the importance of the proline(405)–valine(406)–proline(407) (PVP) motif in transmembrane domain S6 as a mutational hotspot. A novel case of self-limited infantile seizures suggests a continuous clinical spectrum of KCNA2-related disorders. Our study provides further insights into the clinical spectrum, genotype–phenotype correlation, variability, and predicted functional impact of KCNA2 variants.  相似文献   

13.
Roughly 20% of autism spectrum disorders (ASD) are syndromic with a well-established genetic cause. Studying the genes involved can provide insight into the molecular and cellular mechanisms of ASD. 2q23.1 deletion syndrome (causative gene, MBD5) is a recently identified genetic neurodevelopmental disorder associated with ASD. Mutations in MBD5 have been found in ASD cohorts. In this study, we provide a phenotypic update on the prevalent features of 2q23.1 deletion syndrome, which include severe intellectual disability, seizures, significant speech impairment, sleep disturbance, and autistic-like behavioral problems. Next, we examined the phenotypic, molecular, and network/pathway relationships between nine neurodevelopmental disorders associated with ASD: 2q23.1 deletion Rett, Angelman, Pitt-Hopkins, 2q23.1 duplication, 5q14.3 deletion, Kleefstra, Kabuki make-up, and Smith-Magenis syndromes. We show phenotypic overlaps consisting of intellectual disability, speech delay, seizures, sleep disturbance, hypotonia, and autistic-like behaviors. Molecularly, MBD5 possibly regulates the expression of UBE3A, TCF4, MEF2C, EHMT1 and RAI1. Network analysis reveals that there could be indirect protein interactions, further implicating function for these genes in common pathways. Further, we show that when MBD5 and RAI1 are haploinsufficient, they perturb several common pathways that are linked to neuronal and behavioral development. These findings support further investigations into the molecular and pathway relationships among genes linked to neurodevelopmental disorders and ASD, which will hopefully lead to common points of regulation that may be targeted toward therapeutic intervention.  相似文献   

14.
The WWOX gene was initially discovered as a putative tumor suppressor. More recently, its association with multiple central nervous system (CNS) pathologies has been recognized. WWOX biallelic germline pathogenic variants have been implicated in spinocerebellar ataxia type 12 (SCAR12; MIM:614322) and in early infantile epileptic encephalopathy (EIEE28; MIM:616211). WWOX germline copy number variants have also been associated with autism spectrum disorder (ASD). All identified germline genomic variants lead to partial or complete loss of WWOX function. Importantly, large-scale genome-wide association studies have also identified WWOX as a risk gene for common neurodegenerative conditions such as Alzheimer’s disease (AD) and multiple sclerosis (MS). Thus, the spectrum of CNS disorders associated with WWOX is broad and heterogeneous, and there is little understanding of potential mechanisms at play. Exploration of gene expression databases indicates that WWOX expression is comparatively higher in the human cerebellar cortex than in other CNS structures. However, RNA in-situ hybridization data from the Allen Mouse Brain Atlas show that specific regions of the basolateral amygdala (BLA), the medial entorhinal cortex (EC), and deep layers of the isocortex can be singled out as brain regions with specific higher levels of Wwox expression. These observations are in close agreement with single-cell RNA-seq data which indicate that neurons from the medial entorhinal cortex, Layer 5 from the frontal cortex as well as GABAergic basket cells and granule cells from cerebellar cortex are the specific neuronal subtypes that display the highest Wwox expression levels. Importantly, the brain regions and cell types in which WWOX is most abundantly expressed, such as the EC and BLA, are intimately linked to pathologies and syndromic conditions in turn associated with this gene, such as epilepsy, intellectual disability, ASD, and AD. Higher Wwox expression in interneurons and granule cells from cerebellum points to a direct link to the described cerebellar ataxia in cases of WWOX loss of function. We now know that total or partial impairment of WWOX function results in a wide and heterogeneous variety of neurodegenerative conditions for which the specific molecular mechanisms remain to be deciphered. Nevertheless, these observations indicate an important functional role for WWOX in normal development and function of the CNS. Evidence also indicates that disruption of WWOX expression at the gene or protein level in CNS has significant deleterious consequences.  相似文献   

15.
We present a Turkish family with two cousins (OC15 and OC15b) affected with syndromic developmental delay, microcephaly, and trigonocephaly but with some phenotypic traits distinct between them. OC15 showed asymmetrical skeletal defects and syndactyly, while OC15b presented with a more severe microcephaly and semilobal holoprosencephaly. All four progenitors were related and OC15 parents were consanguineous. Whole Exome Sequencing (WES) analysis was performed on patient OC15 as a singleton and on the OC15b trio. Selected variants were validated by Sanger sequencing. We did not identify any shared variant that could be associated with the disease. Instead, each patient presented a de novo heterozygous variant in a different gene. OC15 carried a nonsense mutation (p.Arg95*) in PORCN, which is a gene responsible for Goltz-Gorlin syndrome, while OC15b carried an indel mutation in ZIC2 leading to the substitution of three residues by a proline (p.His404_Ser406delinsPro). Autosomal dominant mutations in ZIC2 have been associated with holoprosencephaly 5. Both variants are absent in the general population and are predicted to be pathogenic. These two de novo heterozygous variants identified in the two patients seem to explain the major phenotypic alterations of each particular case, instead of a homozygous variant that would be expected by the underlying consanguinity.  相似文献   

16.
We have developed a computational method for the de novo design of hydrophobic cores of proteins and tested it experimentally. The method is composed of a pair of programs, (i) to optimize side-chain conformations using an updated rotamer library for potential hydrophobic residues, based on the backbone structure of the protein of interest, and (ii) to estimate changes in Gibbs free energies between the folded and unfolded structures of the optimized sequence. Using these programs, we have engineered several variants of Thermus flavus malate dehydrogenase. To quantitate the stability change in each variant, the circular dichroism spectra of the proteins were measured as a function of guanidine hydrochloride concentration and deltadeltaG(H2O) values of the proteins were determined by extrapolation of the experimental data. However, variants with double replacements showed different denaturation cooperativity from that of the wild type and therefore it was difficult to simply compare the theoretical and experimental stability of each variant using calculated deltadeltaG and experimental deltadeltaG(H2O) values. When the calculated deltadeltaG values were compared with those at 3.5 M guanidine hydrochloride, which was the transition midpoint obtained from the denaturation curve of the wild type, good correlation was observed.   相似文献   

17.
Epidermolysis bullosa is a group of genetic skin conditions characterized by abnormal skin (and mucosal) fragility caused by pathogenic variants in various genes. The disease severity ranges from early childhood mortality in the most severe types to occasional acral blistering in the mildest types. The subtype and severity of EB is linked to the gene involved and the specific variants in that gene, which also determine its mode of inheritance. Current treatment is mainly focused on symptomatic relief such as wound care and blister prevention, because truly curative treatment options are still at the preclinical stage. Given the current level of understanding, the broad spectrum of genes and variants underlying EB makes it impossible to develop a single treatment strategy for all patients. It is likely that many different variant-specific treatment strategies will be needed to ultimately treat all patients. Antisense-oligonucleotide (ASO)-mediated exon skipping aims to counteract pathogenic sequence variants by restoring the open reading frame through the removal of the mutant exon from the pre-messenger RNA. This should lead to the restored production of the protein absent in the affected skin and, consequently, improvement of the phenotype. Several preclinical studies have demonstrated that exon skipping can restore protein production in vitro, in skin equivalents, and in skin grafts derived from EB-patient skin cells, indicating that ASO-mediated exon skipping could be a viable strategy as a topical or systemic treatment. The potential value of exon skipping for EB is supported by a study showing reduced phenotypic severity in patients who carry variants that result in natural exon skipping. In this article, we review the substantial progress made on exon skipping for EB in the past 15 years and highlight the opportunities and current challenges of this RNA-based therapy approach. In addition, we present a prioritization strategy for the development of exon skipping based on genomic information of all EB-involved genes.  相似文献   

18.
Knowledge of the atomic geometry of a surface is a prerequisite for any detailed understanding of the surface's electronic structure and chemical properties. Previous studies have convincingly demonstrated that density functional theory (DFT) yields accurate surface atomic geometries and that reliable predictions concerning stable and metastable phases can be made on the basis of the calculated energetics. In the present work, we use DFT to investigate the atomic structure of four ordered coadsorbate phases of carbon monoxide and oxygen on Ru (0001). All of the structures have a (2 × 2) periodicity with differing concentrations of CO molecules and O atoms. For two of these phases dynamical low-energy electron diffraction (LEED) intensity analyses have been performed, and the agreement between our DFT- and the LEED-determined structures is found to be very good. We predict the atomic geometry of the third phase, for which no structural determination based on experiments has been made to date. We also predict the stability of a new ordered mixed phase.  相似文献   

19.
20.
The corticotropin-releasing hormone receptor 2 (CRHR2) gene encodes CRHR2, contributing to the hypothalamic–pituitary–adrenal stress response and to hyperglycemia and insulin resistance. CRHR2−/− mice are hypersensitive to stress, and the CRHR2 locus has been linked to type 2 diabetes and depression. While CRHR2 variants confer risk for mood disorders, MDD, and type 2 diabetes, they have not been investigated in familial T2D and MDD. In 212 Italian families with type 2 diabetes and depression, we tested 17 CRHR2 single nucleotide polymorphisms (SNPs), using two-point parametric-linkage and linkage-disequilibrium (i.e., association) analysis (models: dominant-complete-penetrance-D1, dominant-incomplete-penetrance-D2, recessive-complete-penetrance-R1, recessive-incomplete-penetrance-R2). We detected novel linkage/linkage-disequilibrium/association to/with depression (3 SNPs/D1, 2 SNPs/D2, 3 SNPs/R1, 3 SNPs/R2) and type 2 diabetes (3 SNPs/D1, 2 SNPs/D2, 2 SNPs/R1, 1 SNP/R2). All detected risk variants are novel. Two depression-risk variants within one linkage-disequilibrium block replicate each other. Two independent novel SNPs were comorbid while the most significant conferred either depression- or type 2 diabetes-risk. Although the families were primarily ascertained for type 2 diabetes, depression-risk variants showed higher significance than type 2 diabetes-risk variants, implying CRHR2 has a stronger role in depression-risk than type 2 diabetes-risk. In silico analysis predicted variants’ dysfunction. CRHR2 is for the first time linked to/in linkage-disequilibrium/association with depression-type 2 diabetes comorbidity and may underlie the shared genetic pathogenesis via pleiotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号