首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The supercritical carbon dioxide extraction was applied to obtain essential oil from Pogostemon cablin in this work. Effect of extraction parameters including temperature, pressure, extraction time and particle size on extraction yield was investigated, and the response surface methodology with a Box-Behnken Design was used to achieve the optimized extraction conditions. The maximum yield of essential oil was 2.4356% under the conditions of extraction temperature 47℃, pressure 24.5 MPa and extraction time 119 min. Moreover, based on the Brunauer-Emmett-Teller theory of adsorption, a mathematical modeling was performed to correlate the measured data. The model shows a function relationship between extraction yield and time by a simple equation with three significantly adjustable parameters. These model parameters have been optimized through simulated annealing algorithm. The predicted data from the mathematical model show a good agreement with the experimental data of the different extraction parameters.  相似文献   

2.
Supercritical carbon dioxide extraction (SFE-CO2) parameters were optimized using response surface methodology and central composite design for lovage (Levisticum officinale Koch.) roots and leaves containing valuable phytoconstituents. Mathematical model predicted the highest yields of extracts from roots and leaves 2.26 and 2.29%, respectively, at 45 MPa pressure, 60 °C temperature, 90 min (roots) and 30 min (leaves) extraction time, whereas the yield of hydrodistilled essential oil was 0.24 and 0.74%, respectively. The highest relative content of the most valuable constituent Z-ligustilide in roots and leaves extracts was 77 and 50% at 10 MPa; however, the highest yields of this compound from 100 g of dry material were obtained at the highest applied pressure and constituted 1188 mg (roots) and 540 mg (leaves). This study showed that lovage is a good source of Z-ligustilide and SFE-CO2 is a preferable technique for its isolation.  相似文献   

3.
Caper (Capparis spinosa) seed oil growing wild in Iran was extracted using supercritical CO2 and ultrasound-assisted extraction methods. The experimental parameters of SFE and UAE were optimized using a rotatable central composite design. The highest yield for SFE was obtained at a pressure of 355 bar, temperature of 65 °C, modifier volume of 140 μL, static and dynamic extraction time of 10 and 35 min, respectively, and for UAE was gained at solvent volume of 23 mL, sonication time of 45 min and temperature of 40 °C. This resulted in a maximum oil recovery of 25.1% and 27.9% for SFE and UAE, respectively. The extracts with higher yield from both methods were subjected to transesterification and GC–MS analysis. SFE and UAE processes selectively extracted the fatty oils with high percentage of omega-6 and omega-9-fatty acids. The major components of the extracted oils from both methods were linoleic, oleic, its positional isomer cis-vaccenic and Palmitic acid.  相似文献   

4.
超临界二氧化碳萃取咖啡因的研究进展   总被引:10,自引:0,他引:10  
超临界二氧化碳萃取咖啡因高新技术经历了由理论的提出到工业的应用 ,由间歇法到半连续法生产的发展历程。我国科技工作者利用此项技术创造性地开发了茶叶综合利用方法 ,在提取的不同阶段 ,在超临界流体中添加不同的添加溶剂来提取出茶叶中的咖啡因以及茶叶中富含的茶多酚、芳香精油、嘌呤类生物碱等宝贵成分  相似文献   

5.
Supercritical carbon dioxide (SC-CO2) was employed to extract oil rich in omega-3 fatty acids (FAs) from chia seeds, and the physicochemical properties of the oil were determined. A central composite rotatable design was used to analyze the impact of temperature (40 °C, 60 °C and 80 °C), pressure (250 bar, 350 bar and 450 bar) and time (60 min, 150 min and 240 min) on oil extraction yield, and a response surface methodology (RSM) was applied. The extraction time and pressure had the greatest effects on oil. The highest oil yield was 92.8% after 300 min of extraction time at 450 bar. The FA composition varied depending on operating conditions but had a high content of α-linolenic acid (44.4-63.4%) and linoleic acid (19.6-35.0%). The rheological evaluation of the oils indicated a Newtonian behavior. The viscosity of the oil decreased with the increase in temperature following an Arrhenius-type relationship.  相似文献   

6.
Squalene and tocopherols are the most important bioactive constituents in lipophilic amaranth fraction. Therefore, developments of processes of isolation of amaranth extracts enriched with these compounds are of interest. In this study the lipophilic fraction of amaranth seeds was extracted by supercritical fluid extraction with carbon dioxide (SCE-CO2) under different pressure conditions and by adding 2 and 5% of cosolvent ethanol. The yield of extract varied from 1.37 (15 MPa without cosolvent) to 5.12% (55 MPa and 5% of cosolvent). The highest content of unsaponifiables (21.1%) in the extract was at 55 MPa and 5% of cosolvent; at these conditions the yields of tocopherols and squalene from amaranth seeds were 317.3 mg/kg and 0.289 g/100 g, respectively. Tocopherol isomers in amaranth oil were distributed at the approximate ratio of 1(α-T):27(β-T):6.5(γ-T):5(δ-T). The extract was fractionated in the two separators by gradual decrease of the pressure and it was found that the fraction obtained at ambient conditions contained the highest concentration of tocopherols (up to 7.6 mg/g) and squalene (up to 17.9 g/100 g oil). The highest antioxidant activity measured by the L-ORAC assay possessed the fractions with the highest concentrations of squalene and tocopherols and obtained at 15 MPa with pure CO2 (235.1 μmol TE/g) and 2% of cosolvent (257.6 μmol TE/g).  相似文献   

7.
Feverfew (Tanacetum parthenium L., Asteraceae) is a perennial medicinal plant which has been used to alleviate the symptoms of migraines, headaches and rheumatoid arthritis. The herb contains various potentially active constituents such as sesquiterpene-γ-lactones, flavonoids and volatile oil. The main sesquiterpene-lactone in feverfew is parthenolide which is considered to be responsible for the therapeutical effects. Supercritical CO2 extraction was carried out at different pressures (10–30 MPa), temperatures (40–80 °C) and co-solvent contents (0–10% ethanol) in order to study the extraction yield and the parthenolide recovery of the extracts. Leaves collected before and during flowering and flower heads were investigated. A factorial experiment using a full 33 design was followed during the experiments and response surface methodology was implemented to analyze the influence of the variables and optimize the extraction. The critical values of parthenolide content were found to be 7% EtOH, 22 MPa and 64 °C in case of all three samples. It was determined, that the optimal conditions of the extraction, where the maximum parthenolide content and extract yield can be reached, do not coincide. The highest yield of parthenolide was obtained in the flower heads (0.604 wt.%).  相似文献   

8.
Extraction yields and fatty acid profiles from freeze-dried Chlorella vulgaris by microwave pretreatment followed by supercritical carbon dioxide (MW-SCCO(2)) extraction were compared with those obtained by supercritical carbon dioxide extraction alone (SCCO(2)). Work performed with pressure range of 20-28 Mpa and temperature interval of 40-70 °C, gave the highest extraction yield (w/w dry weight) at 28 MPa/40 °C. MW-SCCO(2) allowed to obtain the highest extraction yield (4.73%) compared to SCCO(2) extraction alone (1.81%). Qualitative and quantitative analyses of microalgae oil showed that palmitic, oleic, linoleic and α-linolenic acid were the most abundant identified fatty acids. Oils obtained by MW-SCCO(2) extraction had the highest concentrations of fatty acids compared to SCCO(2) extraction without pretreatment. Native form, and microwave pretreated and untreated microalgae were observed by scanning electronic microscopy (SEM). SEM micrographs of pretreated microalgae present tearing wall agglomerates. After SCCO(2), microwave pretreated microalgae presented several micro cracks; while native form microalgae wall was slightly damaged.  相似文献   

9.
Supercritical carbon dioxide (SC-CO2) extraction of Conjugated linoleic acid (CLA) ethyl ester was investigated at pressures in the range of 9 to 10.5 MPa and temperature gradients ranging from 0°C to 21°C. The content of CLA-ethyl ester in the fraction was analyzed with gas chromatography (GC). The experimental results indicated that the rate of extraction would rise with the increase of pressure when temperature gradient was given. Moreover, the extraction pressure had insignificant influence on the selectivity of CLA-ethyl ester in SC-CO2. When pressure was fixed, setting certain temperature gradient can improve the selectivity of CLA-ethyl ester in SC-CO2, and CLA-ethyl ester can be concentrated more effectively than without a temperature gradient. The acid value and peroxide value of the fractions were reduced obviously, compared to the raw material. The optimal condition is pressure at 10 MPa and temperature gradient at 11°C.  相似文献   

10.
Pandan (Pandanus amaryllifolius Roxb.) leaf is a source of natural flavoring widely used in South-east Asia. The major compound contributing to the characteristic flavor of Pandan is 2-acetyl-1-pyrroline (2AP). This highly volatile compound also contributes significantly to the flavor of aromatic rice such as basmati and jasmine rice. As the consumer requirement for use of natural flavors, extraction of components from natural sources has been sought. In this study, supercritical carbon dioxide (SC-CO2) and solvent extraction of components from Pandan leaves were performed. Experimental parameters included particle size and drying method (oven and freeze drying). Results indicated that the initial value of moisture content and particle size of Pandan leaves had the greatest effect on the total yield and 2AP concentration of the extracts. Almost 80% of water in Pandan leaves can be removed by drying. Yields of supercritical extracts were 10 times lower when compared to the hexane extracts. The total yield of extracts was increased up to 50% with decreasing particle size of Pandan leaves. Extraction of coarsely ground freeze-dried Pandan leaves by SC-CO2 obtained the highest yield (0.88 ± 0.06%) followed by oven dried (0.38 ± 0.09%) and fresh leaves (0.34 ± 0.01%). The 2AP was identified by GC-MS and analyzed by GC-FID. Supercritical and hexane extracts of pre-treated Pandan leaves were found to have a small quantity of 2AP ranging between 0.04 ± 0.01 and 0.45 ± 0.01 ppm. Grinding pre-treatment was the best method for both SC-CO2 and hexane extractions while the freeze drying method was the best for SC-CO2.  相似文献   

11.
In this study, the essential oil of aerial parts of a species of a plant called Smyrnium cordifolium Boiss (SCB) was extracted by supercritical CO2. The essence was analyzed by the method of GC/MS. Design of experiments was carried out with response surface methodology by Minitab 16 software to optimize four operating variables of supercritical carbon dioxide (SC-CO2) extraction (pressure, temperature, CO2 flow rate and extraction dynamic time). This is the first report announcing optimization of the operation of supercritical extraction of SCB in laboratorial conditions. Optimizing process was done to achieve maximum yield extraction. Independent variables were dynamic time (td), pressure (P), temperature (T) and flow rate of SC-CO2 (Q) in the range of 30–150 min, 10–30 MPa, 40–60 °C and 0.5–1.7 ml/min, respectively. The experimental optimal recovery of essential oil (0.8431, w/w%) was obtained at 13.43 MPa, 40 °C, 150 min (dynamic) and 1.7 ml/min (CO2 flow rate).  相似文献   

12.
Reactive extraction using supercritical carbon dioxide (scCO2) and tri-n-octylamine (TOA) was evaluated as a separation method of succinic acid from an aqueous solution. The reactive extraction of succinic acid was performed at varying initial acid concentrations in aqueous solution (0.07–0.45 mol?dm?3), temperature (35–65°C) and pressure (8–16 MPa). The succinic acid separation was conducted in both batch mode and semi-continuous mode. The highest reactive extraction efficiency of approx. 62% was obtained for the process conducted in semi-continuous mode at 35°C and 16 MPa for the initial acid concentrations in aqueous phase of 0.39 mol?dm?3.  相似文献   

13.
14.
The effect of ethanol and methanol cosolvents on the extraction yield and kinetics of crude oil originating from the Halfdan field of the North Sea by supercritical carbon dioxide was investigated across a pressure range of 20–60 MPa under a fixed temperature of 60 °C. Results inform that the pure carbon dioxide recovery varied between 43 and 77% while the recovery of the liquid phase of oil ranged between 22 and 56% across the entire pressure range. Using ethanol- and methanol-modified CO2, the total recovery yield increased significantly averaging an additional 18.2% and 19.4% respectively when compared to pure carbon dioxide. The ethanol addition improved the recovery of the liquid phase of oil averaging 9.6% while the methanol addition improved it to 7.3% across the entire pressure range.Study of the kinetics of extraction process indicated that heavier fractions were extracted faster with the ethanol- compared to the methanol-modified CO2. GC–MS TIC chromatographic analysis of the extracted oil fractions showed that the extraction of C19-C30 single carbon number groups with the addition of methanol is more dependent on pressure. Predominantly, ethanol addition was more efficient in extraction of C17-C38 single carbon number groups while methanol contributed more in extraction of C7-C9 SCN groups.  相似文献   

15.
Continuous production of fatty acid methyl esters (FAMEs) from corn oil was studied in a supercritical carbon dioxide (SC-CO2) bioreactor using immobilized lipase (Novozym 435) as catalyst. Response surface methodology (RSM) based on central composite rotatable design (CCRD) was employed to investigate and optimize the reaction conditions: pressure (11-35 MPa), temperature (35-63 °C), substrate mole ratio (methanol:corn oil 1-9) and CO2 flow rate (0.4-3.6 L/min, measured at ambient conditions). Increasing the substrate mole ratio increased the FAME content, whereas increasing pressure decreased the FAME content. Higher conversions were obtained at higher and lower temperatures and CO2 flow rates compared to moderate temperatures and CO2 flow rates. The optimal reaction conditions generated from the predictive model for the maximum FAME content were 19.4 MPa, 62.9 °C, 7.03 substrate mole ratio and 0.72 L/min CO2 flow rate. The optimum predicted FAME content was 98.9% compared to an actual value of 93.3 ± 1.1% (w/w). The SC-CO2 bioreactor packed with immobilized lipase shows great potential for biodiesel production.  相似文献   

16.
In this study, Camellia oil is co-extracted from Camellia oleifera seeds and green tea scraps by supercritical carbon dioxide (SC-CO2), which is optimized on the extraction yield, ABTS-scavenging activity, and total polyphenols content (TPC) of oil by single-factor experiments combined with response surface methodology (RSM). The extraction temperature, pressure, dynamic time, carbon dioxide (CO2) flow rate, and seed mass ratio were investigated with single-factor experiments. The results indicated the optimum CO2 flow rate and dynamic extraction time were 15 L hour−1 and 60 min (i.e., 2.382 kg CO2/100 g sample). Furthermore, the complicated effects of extraction temperature (40–50 °C), pressure (20–30 MPa), and seed mass ratio (0.25–0.75) were optimized by RSM based on the Box–Behnken design (BBD). The models with high R-squared values were obtained and used to predict the optimum operating conditions of the process. Under the optimum operating conditions (i.e., temperature of 46 °C, pressure of 30 MPa, and seed mass ratio of 0.35), the extraction yield, ABTS-scavenging activity, and TPC of oil were 14.43 ± 0.17 g/100 g sample, 73.70 ± 0.34%, and 2.18 ± 0.05 mg GAE/g oil, which were in good agreement with the predicted values. In addition, the experiments indicated that the Camellia oil obtained was rich in polyphenols, resulting in better oxidation stability and antioxidant activity than the original oil.  相似文献   

17.
In this work, supercritical CO2 extraction has been carried out on a traditional Chinese herb of Baizhu under pressure of 15-45 MPa, temperature of 40-60 °C, mean powder size of 0.167-0.675 mm, and extraction time of up to 180 min. The maximum extraction yield obtained in 5 h is about 6.76 × 10−2 g per gram raw materials at 60 °C and 45 MPa. The extraction process is correlated by means of five different mathematical models. The evaluation of these models against experimental data shows that among these models the Sovová model performs the best with an overall average absolute relative deviation of 1.62%, followed by Crank and Naik models, finally the Barton and Martínez models. From the Sovová model, the mass transfer coefficient in solid or fluid are obtained and they are varying in the ranges of 4.02-6.14 × 10−8 m/s and 0.88-2.87 × 10−9 m/s, respectively. These results suggest that solute diffusion in solid matrices and solute mass transfer in fluid are both important in affecting the supercritical CO2 extraction process of Baizhu.  相似文献   

18.
In this study, a novel and environmentally friendly extracting method, supercritical carbon dioxide (SC‐CO2) extraction, was investigated in the thermally induced phase separation (TIPS) process for making microporous membranes. In the SC‐CO2 extraction, the effects of extraction time, pressure, and temperature on the extraction fraction, membrane morphology, and membrane performance were investigated. It was concluded that with extraction conditions of 18 MPa, 35°C and 2 h, the porous membrane had the highest extraction fraction. There was a close relationship between membrane performance and the extraction conditions of SC‐CO2, and it is possible to tailor membrane performance through the choice of extraction conditions. Compared with traditional solvent extraction, a dry membrane treated by SC‐CO2 extraction has much less shrinkage and greater water permeability, whereas the degree of crystallization of a membrane extracted by SC‐CO2 is slightly greater than that extracted by ethanol. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1632–1639, 2007  相似文献   

19.
Supercritical carbon dioxide was used for partially selective extraction of triacetin from a mixture of triacetin, diacetin, and monoacetin with a molar ratio of 1:2:1. The extraction was carried out in two stages. In the first stage, a central composite design was used to optimize the four variables of pressure, temperature, liquid CO2 flow rate, and extraction time at three levels using a semi-continuous, supercritical carbon dioxide extraction setup. The composition of the extract under the predicted optimum conditions (i.e., 109 bar, 56 °C, 0.86 mL min−1, and 61 min) was about 69% triacetin accompanied by only 30% diacetin and no detectable monoacetin. In the second stage, the effect of the two factors, pressure (100, 109, and 140 bar) and liquid CO2 flow rates of 0.86 and 1.5 mL min−1 measured at average laboratory temperature (27 °C) and pressure (0.89 bar), were studied using a continuous, supercritical carbon dioxide fractionation setup equipped with a glass-bead packed column kept under a thermal gradient of 56-70 °C. The experimental design was organized as a 3 × 2 general factorial design. Under the best conditions (i.e., 140 bar and 1.5 mL min−1), the extraction yield of triacetin and diacetin were 41.8 and 3.0%, respectively, without any detectable monoacetin as verified by GC-FID.  相似文献   

20.
This study examines the effects of pressure, temperature and solvent to solid ratio (SSR) on extraction efficiency of triglycerides from powdered Jatropha seeds by using supercritical carbon dioxide extraction. Supercritical extractions were designed for pressures ranging from 250 to 350 bar, temperatures ranging from 313 to 333 K and SSR values ranging from 65:1 to 125:1. All values were selected using response surface methodology in order to determine their effects on the concentration of triglycerides from the extracted oil. Using 3750 g of carbon dioxide over 5 h, a supercritical carbon dioxide extraction (at 350 bar, 333 K and an SSR value of 125:1) yielded 43.51% oil. The concentration and extraction efficiency (i.e. recovery) of triglycerides in the extract reached 657.1 mg/g and 97.62%, respectively. Changes in pressure presented more effective in increasing the recovery of triglycerides, but both temperature and the SSR value are important in obtaining high concentration of triglycerides from the Jatropha seeds that are useful for biodiesel materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号