共查询到20条相似文献,搜索用时 0 毫秒
1.
Angelika Krl-Grzymaa Edyta Sienkiewicz-Szapka Ewa Fiedorowicz Dominika Rozmus Anna Cieliska Andrzej Grzybowski 《International journal of molecular sciences》2022,23(17)
Biological material is one of the most important aspects that allow for the correct diagnosis of the disease, and tears are an interesting subject of research because of the simplicity of collection, as the well as the relation to the components similar to other body fluids. In this review, biomarkers for Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple sclerosis (MS) in tears are investigated and analyzed. Records were obtained from the PubMed and Google Scholar databases in a timeline of 2015–2022. The keywords were: tear film/tear biochemistry/tear biomarkers + diseases (AD, PD, or MS). The recent original studies were analyzed, discussed, and biomarkers present in tears that can be used for the diagnosis and management of AD, PD, and MS diseases were shown. α-synTotal and α-synOligo, lactoferrin, norepinephrine, adrenaline, epinephrine, dopamine, α-2-macroglobulin, proteins involved in immune response, lipid metabolism and oxidative stress, apolipoprotein superfamily, and others were shown to be biomarkers in PD. For AD as potential biomarkers, there are: lipocalin-1, lysozyme-C, and lacritin, amyloid proteins, t-Tau, p-Tau; for MS there are: oligoclonal bands, lipids containing choline, free carnitine, acylcarnitines, and some amino acids. Information systematized in this review provides interesting data and new insight to help improve clinical outcomes for patients with neurodegenerative disorders. 相似文献
2.
Giovanni Schepici Placido Bramanti Emanuela Mazzon 《International journal of molecular sciences》2020,21(22)
Sulforaphane (SFN) is a phytocompound belonging to the isothiocyanate family. Although it was also found in seeds and mature plants, SFN is mainly present in sprouts of many cruciferous vegetables, including cabbage, broccoli, cauliflower, and Brussels sprouts. SFN is produced by the conversion of glucoraphanin through the enzyme myrosinase, which leads to the formation of this isothiocyanate. SFN is especially characterized by antioxidant, anti-inflammatory, and anti-apoptotic properties, and for this reason, it aroused the interest of researchers. The aim of this review is to summarize the experimental studies present on Pubmed that report the efficacy of SFN in the treatment of neurodegenerative disease, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and multiple sclerosis (MS). Therefore, thanks to its beneficial effects, SFN could be useful as a supplement to counteracting neurodegenerative diseases. 相似文献
3.
Federico Paolini Paoletti Simone Simoni Lucilla Parnetti Lorenzo Gaetani 《International journal of molecular sciences》2021,22(9)
Brain small vessel disease (SVD) refers to a variety of structural and functional changes affecting small arteries and micro vessels, and manifesting as white matter changes, microbleeds and lacunar infarcts. Growing evidence indicates that SVD might play a significant role in the neurobiology of central nervous system (CNS) neurodegenerative disorders, namely Alzheimer’s disease (AD) and Parkinson’s disease (PD), and neuroinflammatory diseases, such as multiple sclerosis (MS). These disorders share different pathophysiological pathways and molecular mechanisms (i.e., protein misfolding, derangement of cellular clearance systems, mitochondrial impairment and immune system activation) having neurodegeneration as biological outcome. In these diseases, the actual contribution of SVD to the clinical picture, and its impact on response to pharmacological treatments, is not known yet. Due to the high frequency of SVD in adult-aged patients, it is important to address this issue. In this review, we report preclinical and clinical data on the impact of SVD in AD, PD and MS, with the main aim of clarifying the predictability of SVD on clinical manifestations and treatment response. 相似文献
4.
Sebastiano Giallongo Lucia Longhitano Simona Denaro Simona DAprile Filippo Torrisi Enrico La Spina Cesarina Giallongo Giuliana Mannino Debora Lo Furno Agata Zappal Rosario Giuffrida Rosalba Parenti Giovanni Li Volti Daniele Tibullo Nunzio Vicario 《International journal of molecular sciences》2022,23(23)
Neurodegenerative disorders are characterized by the progressive loss of central and/or peripheral nervous system neurons. Within this context, neuroinflammation comes up as one of the main factors linked to neurodegeneration progression. In fact, neuroinflammation has been recognized as an outstanding factor for Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and multiple sclerosis (MS). Interestingly, neuroinflammatory diseases are characterized by dramatic changes in the epigenetic profile, which might provide novel prognostic and therapeutic factors towards neuroinflammatory treatment. Deep changes in DNA and histone methylation, along with histone acetylation and altered non-coding RNA expression, have been reported at the onset of inflammatory diseases. The aim of this work is to review the current knowledge on this field. 相似文献
5.
Julia Doroszkiewicz Magdalena Groblewska Barbara Mroczko 《International journal of molecular sciences》2022,23(9)
The degeneration and dysfunction of neurons are key features of neurodegenerative diseases (NDs). Currently, one of the main challenges facing researchers and clinicians is the ability to obtain reliable diagnostic tools that will allow for the diagnosis of NDs as early as possible and the detection of neuronal dysfunction, preferably in the presymptomatic stage. Additionally, better tools for assessing disease progression in this group of disorders are also being sought. The ideal biomarker must have high sensitivity and specificity, be easy to measure, give reproducible results, and reflect the disease progression. Molecular biomarkers include miRNAs and extracellular microvesicles known as exosomes. They may be measured in two extracellular fluids of the highest importance in NDs, i.e., cerebrospinal fluid (CSF) and blood. The aim of the current review is to summarize the pathophysiology of the four most frequent NDs—i.e., Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS)—as well as current progress in the research into miRNAs as biomarkers in these major neurodegenerative diseases. In addition, we discuss the possibility of using miRNA-based therapies in the treatment of neurodegenerative diseases, and present the limitations of this type of therapy. 相似文献
6.
Kathryn G. Sterling Griffin Kutler Dodd Shatha Alhamdi Peter G. Asimenios Ruben K. Dagda Kenny L. De Meirleir Dorothy Hudig Vincent C. Lombardi 《International journal of molecular sciences》2022,23(21)
Recent advances in next-generation sequencing (NGS) technologies have opened the door to a wellspring of information regarding the composition of the gut microbiota. Leveraging NGS technology, early metagenomic studies revealed that several diseases, such as Alzheimer’s disease, Parkinson’s disease, autism, and myalgic encephalomyelitis, are characterized by alterations in the diversity of gut-associated microbes. More recently, interest has shifted toward understanding how these microbes impact their host, with a special emphasis on their interactions with the brain. Such interactions typically occur either systemically, through the production of small molecules in the gut that are released into circulation, or through signaling via the vagus nerves which directly connect the enteric nervous system to the central nervous system. Collectively, this system of communication is now commonly referred to as the gut-microbiota-brain axis. While equally important, little attention has focused on the causes of the alterations in the composition of gut microbiota. Although several factors can contribute, mucosal immunity plays a significant role in shaping the microbiota in both healthy individuals and in association with several diseases. The purpose of this review is to provide a brief overview of the components of mucosal immunity that impact the gut microbiota and then discuss how altered immunological conditions may shape the gut microbiota and consequently affect neuroimmune diseases, using a select group of common neuroimmune diseases as examples. 相似文献
7.
The most common cause of dementia, especially in elderly people, is Alzheimer’s disease (AD), with aging as its main risk factor. AD is a multifactorial neurodegenerative disease. There are several factors increasing the risk of AD development. One of the main features of Alzheimer’s disease is impairment of brain energy. Hypometabolism caused by decreased glucose uptake is observed in specific areas of the AD-affected brain. Therefore, glucose hypometabolism and energy deficit are hallmarks of AD. There are several hypotheses that explain the role of glucose hypometabolism in AD, but data available on this subject are poor. Reduced transport of glucose into neurons may be related to decreased expression of glucose transporters in neurons and glia. On the other hand, glucose transporters may play a role as potential targets for the treatment of AD. Compounds such as antidiabetic drugs, agonists of SGLT1, insulin, siRNA and liposomes are suggested as therapeutics. Nevertheless, the suggested targets of therapy need further investigations. 相似文献
8.
9.
Agnieszka Kulczyska-Przybik Piotr Mroczko Maciej Dulewicz Barbara Mroczko 《International journal of molecular sciences》2021,22(9)
Reticulons (RTNs) are crucial regulatory factors in the central nervous system (CNS) as well as immune system and play pleiotropic functions. In CNS, RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. Moreover, RTNs, particularly RTN4 and RTN3, are involved in neurodegeneration and neuroinflammation processes. The crucial role of RTNs in the development of several neurodegenerative diseases, including Alzheimer’s disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or other neurological conditions such as brain injury or spinal cord injury, has attracted scientific interest. Reticulons, particularly RTN-4A (Nogo-A), could provide both an understanding of early pathogenesis of neurodegenerative disorders and be potential therapeutic targets which may offer effective treatment or inhibit disease progression. This review focuses on the molecular mechanisms and functions of RTNs and their potential usefulness in clinical practice as a diagnostic tool or therapeutic strategy. 相似文献
10.
11.
12.
Miren Altuna Gonzalo Olmedo-Saura María Carmona-Iragui Juan Fortea 《International journal of molecular sciences》2022,23(8)
Epilepsy and Alzheimer’s disease (AD) incidence increases with age. There are reciprocal relationships between epilepsy and AD. Epilepsy is a risk factor for AD and, in turn, AD is an independent risk factor for developing epilepsy in old age, and abnormal AD biomarkers in PET and/or CSF are frequently found in late-onset epilepsies of unknown etiology. Accordingly, epilepsy and AD share pathophysiological processes, including neuronal hyperexcitability and an early excitatory–inhibitory dysregulation, leading to dysfunction in the inhibitory GABAergic and excitatory glutamatergic systems. Moreover, both β-amyloid and tau protein aggregates, the anatomopathological hallmarks of AD, have proepileptic effects. Finally, these aggregates have been found in the resection material of refractory temporal lobe epilepsies, suggesting that epilepsy leads to amyloid and tau aggregates. Some epileptic syndromes, such as medial temporal lobe epilepsy, share structural and functional neuroimaging findings with AD, leading to overlapping symptomatology, such as episodic memory deficits and toxic synergistic effects. In this respect, the existence of epileptiform activity and electroclinical seizures in AD appears to accelerate the progression of cognitive decline, and the presence of cognitive decline is much more prevalent in epileptic patients than in elderly patients without epilepsy. Notwithstanding their clinical significance, the diagnosis of clinical seizures in AD is a challenge. Most are focal and manifest with an altered level of consciousness without motor symptoms, and are often interpreted as cognitive fluctuations. Finally, despite the frequent association of epilepsy and AD dementia, there is a lack of clinical trials to guide the use of antiseizure medications (ASMs). There is also a potential role for ASMs to be used as disease-modifying drugs in AD. 相似文献
13.
Balapal S. Basavarajappa Shivakumar Subbanna 《International journal of molecular sciences》2021,22(9)
Advances achieved with molecular biology and genomics technologies have permitted investigators to discover epigenetic mechanisms, such as DNA methylation and histone posttranslational modifications, which are critical for gene expression in almost all tissues and in brain health and disease. These advances have influenced much interest in understanding the dysregulation of epigenetic mechanisms in neurodegenerative disorders. Although these disorders diverge in their fundamental causes and pathophysiology, several involve the dysregulation of histone methylation-mediated gene expression. Interestingly, epigenetic remodeling via histone methylation in specific brain regions has been suggested to play a critical function in the neurobiology of psychiatric disorders, including that related to neurodegenerative diseases. Prominently, epigenetic dysregulation currently brings considerable interest as an essential player in neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Amyotrophic lateral sclerosis (ALS) and drugs of abuse, including alcohol abuse disorder, where it may facilitate connections between genetic and environmental risk factors or directly influence disease-specific pathological factors. We have discussed the current state of histone methylation, therapeutic strategies, and future perspectives for these disorders. While not somatically heritable, the enzymes responsible for histone methylation regulation, such as histone methyltransferases and demethylases in neurons, are dynamic and reversible. They have become promising potential therapeutic targets to treat or prevent several neurodegenerative disorders. These findings, along with clinical data, may provide links between molecular-level changes and behavioral differences and provide novel avenues through which the epigenome may be targeted early on in people at risk for neurodegenerative disorders. 相似文献
14.
15.
Neurodegenerative diseases resulting from the progressive loss of structure and/or function of neurons contribute to different paralysis degrees and loss of cognition and sensation. The lack of successful curative therapies for neurodegenerative disorders leads to a considerable burden on society and a high economic impact. Over the past 20 years, regenerative cell therapy, also known as stem cell therapy, has provided an excellent opportunity to investigate potentially powerful innovative strategies for treating neurodegenerative diseases. This is due to stem cells’ capability to repair injured neuronal tissue by replacing the damaged or lost cells with differentiated cells, providing a conducive environment that is in favor of regeneration, or protecting the existing healthy neurons and glial cells from further damage. Thus, in this review, the various types of stem cells, the current knowledge of stem-cell-based therapies in neurodegenerative diseases, and the recent advances in this field are summarized. Indeed, a better understanding and further studies of stem cell technologies cause progress into realistic and efficacious treatments of neurodegenerative disorders. 相似文献
16.
Dorit Trudler Swagata Ghatak Stuart A. Lipton 《International journal of molecular sciences》2021,22(15)
Neurodegenerative diseases affect millions of people worldwide and are characterized by the chronic and progressive deterioration of neural function. Neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD), represent a huge social and economic burden due to increasing prevalence in our aging society, severity of symptoms, and lack of effective disease-modifying therapies. This lack of effective treatments is partly due to a lack of reliable models. Modeling neurodegenerative diseases is difficult because of poor access to human samples (restricted in general to postmortem tissue) and limited knowledge of disease mechanisms in a human context. Animal models play an instrumental role in understanding these diseases but fail to comprehensively represent the full extent of disease due to critical differences between humans and other mammals. The advent of human-induced pluripotent stem cell (hiPSC) technology presents an advantageous system that complements animal models of neurodegenerative diseases. Coupled with advances in gene-editing technologies, hiPSC-derived neural cells from patients and healthy donors now allow disease modeling using human samples that can be used for drug discovery. 相似文献
17.
Paola Tedeschi Manuela Nigro Alessia Travagli Martina Catani Alberto Cavazzini Stefania Merighi Stefania Gessi 《International journal of molecular sciences》2022,23(13)
Garlic, Allium sativum, has long been utilized for a number of medicinal purposes around the world, and its medical benefits have been well documented. The health benefits of garlic likely arise from a wide variety of components, possibly working synergistically. Garlic and garlic extracts, especially aged garlic extracts (AGEs), are rich in bioactive compounds, with potent anti-inflammatory, antioxidant and neuroprotective activities. In light of these effects, garlic and its components have been examined in experimental models of Alzheimer’s disease (AD), the most common form of dementia without therapy, and a growing health concern in aging societies. With the aim of offering an updated overview, this paper reviews the chemical composition, metabolism and bioavailability of garlic bioactive compounds. In addition, it provides an overview of signaling mechanisms triggered by garlic derivatives, with a focus on allicin and AGE, to improve learning and memory. 相似文献
18.
Karolina Maciejewska Kamila Czarnecka Pawe Krcisz Dorota Niedziaek Grzegorz Wieczorek Robert Skibiski Pawe Szymaski 《International journal of molecular sciences》2022,23(11)
A series of new cyclopentaquinoline derivatives with 9-acridinecarboxylic acid and a different alkyl chain length were synthesized, and their ability to inhibit cholinesterases was evaluated. All designed compounds, except derivative 3f, exhibited a selectivity for butyrylcholinesterase (BuChE) with IC50 values ranging from 103 to 539 nM. The 3b derivative revealed the highest inhibitory activity towards BuChE (IC50 = 103.73 nM) and a suitable activity against AChE (IC50 = 272.33 nM). The 3f derivative was the most active compound to AChE (IC50 = 113.34 nM) with satisfactory activity towards BuChE (IC50 = 203.52 nM). The potential hepatotoxic effect was evaluated for both 3b and 3f compounds. The 3b and 3f potential antioxidant activity was measured using the ORAC-FL method. The 3b and 3f derivatives revealed a significantly higher antioxidant potency, respectively 35 and 25 higher than tacrine. Theoretical, physicochemical, and pharmacokinetic properties were calculated using ACD Labs Percepta software. Molecular modeling and kinetic study were used to reveal the mechanism of cholinesterase inhibition in the most potent compounds: 3b and 3f. 相似文献
19.
Paola Piscopo Maria Bellenghi Valeria Manzini Alessio Crestini Giada Pontecorvi Massimo Corbo Elena Ortona Alessandra Car Annamaria Confaloni 《International journal of molecular sciences》2021,22(9)
Sex is a significant variable in the prevalence and incidence of neurological disorders. Sex differences exist in neurodegenerative disorders (NDs), where sex dimorphisms play important roles in the development and progression of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. In the last few years, some sex specific biomarkers for the identification of NDs have been described and recent studies have suggested that microRNA (miRNA) could be included among these, as influenced by the hormonal and genetic background. Failing to consider the possible differences between males and females in miRNA evaluation could introduce a sex bias in studies by not considering some of these sex-related biomarkers. In this review, we recapitulate what is known about the sex-specific differences in peripheral miRNA levels in neurodegenerative diseases. Several studies have reported sex-linked disparities, and from the literature analysis miR-206 particularly has been shown to have a sex-specific involvement. Hopefully, in the near future, patient stratification will provide important additional clues in diagnosis, prognosis, and tailoring of the best therapeutic approaches for each patient. Sex-specific biomarkers, such as miRNAs, could represent a useful tool for characterizing subgroups of patients. 相似文献
20.
The incidence of neurodegenerative diseases has increased greatly worldwide due to the rise in life expectancy. In spite of notable development in the understanding of these disorders, there has been limited success in the development of neuroprotective agents that can slow the progression of the disease and prevent neuronal death. Some natural products and molecules are very promising neuroprotective agents because of their structural diversity and wide variety of biological activities. In addition to their neuroprotective effect, they are known for their antioxidant, anti-inflammatory and antiapoptotic effects and often serve as a starting point for drug discovery. In this review, the following natural molecules are discussed: firstly, kynurenic acid, the main neuroprotective agent formed via the kynurenine pathway of tryptophan metabolism, as it is known mainly for its role in glutamate excitotoxicity, secondly, the dietary supplement pantethine, that is many sided, well tolerated and safe, and the third molecule, α-lipoic acid is a universal antioxidant. As a conclusion, because of their beneficial properties, these molecules are potential candidates for neuroprotective therapies suitable in managing neurodegenerative diseases. 相似文献