首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the extraction of jojoba seed oil obtained from jojoba seed using both supercritical CO2 and supercritical CO2+ethanol mixtures was investigated. The recovery of jojoba seed oil was performed in a green and high-tech separation process. The extraction operating was carried out at operating pressures of 25, 35 and 45 MPa, operating temperatures of 343 and 363 K, supercritical fluid flow rates of 3.33 × 10−8, 6.67 × 10−8 and 13.33 × 10−8 m3 s−1, entrainer concentrations of 2, 4 and 8 vol.%, and average particle diameters of 4.1 × 10−4, 6.1 × 10−4, 8.6 × 10−4 and 1.2 × 10−3 m. It was found that a green chemical modifier such as ethanol could enhance the solubilities, initial extraction rate and extraction yield of jojoba seed oil from the seed matrix as compared to supercritical CO2. In addition, it was found that the solubility, the initial extraction rate and the extraction yield depended on operating pressure and operating temperature, entrainer concentration, average particle size and supercritical solvent flow rate. The solubility of jojoba seed oil and initial extraction rate increased with temperature at the operating pressures of 35 and 45 MPa and decreased with increasing temperature at the operating pressure of 25 MPa. Furthermore, supercritical fluid extraction involved short extraction time and minimal usage of small amounts entrainer to the CO2. About 80% of the total jojoba seed oil was extracted during the constant rate period at the pressure of 35 and 45 MPa.  相似文献   

2.
Extraction of sunflower oil from sunflower seeds (Heliantus annuus L.) using supercritical CO2 was studied. The shrinking core model was applied to the modeling of the packed-bed extraction process. The experimental data were obtained for extraction conducted at the pressures of 20, 30, 40, 50 and 60 MPa; the temperatures of 313, 333 and 353 K, the CO2 flow rates of 1–4, and 6 cm3 CO2 min−1; the mean particle diameters of 0.23, 0.55, 1.09, 2.18 mm. The supercritical CO2 extraction process was modeled by a quasi steady state model as a function of extraction time, pressure, temperature, CO2 flow rate, and particle diameter. The supercritical CO2 extraction process. The intraparticle diffusion coefficient (effective diffusivity) De was used as adjustable parameter. The model using the best fit of De was correlated the data satisfactorily.  相似文献   

3.
In order to improve the efficiency of processes using supercritical (sc) carbon dioxide (CO2) to micronize the carotenoid “lycopene”, it is important to know the solubility of lycopene in mixtures of the organic solvent ethyl acetate (EA) and the antisolvent CO2 at elevated pressures. The solubility of lycopene has been determined for different temperatures (313–333 K), pressures (12–16 MPa) and CO2 molar fractions (0.58–1). The obtained data show that CO2 acts as an antisolvent in the system lycopene/EA/CO2 in the range of CO2/EA ratios studied. The solubility of lycopene is rather small with lycopene molar fractions ranging from 0.1 × 10−6 to 46 × 10−6. The solubility of lycopene increases with temperature, pressure and EA concentration.  相似文献   

4.
The solubility and diffusion coefficient of supercritical CO2 in polycarbonate (PC) were measured using a magnetic suspension balance at sorption temperatures that ranged from 75 to 175 °C and at sorption pressures as high as 20 MPa. Above certain threshold pressures, the solubility of CO2 decreased with time after showing a maximum value at a constant sorption temperature and pressure. This phenomenon indicated the crystallization of PC due to the plasticization effect of dissolved CO2. A thorough investigation into the dependence of sorption temperature and pressure on the crystallinity of PC showed that the crystallization of PC occurred when the difference between the sorption temperature and the depressed glass transition temperature exceeded 40 °C (T  Tg  40 °C). Furthermore, the crystallization rate of PC was determined according to Avrami's equation. The crystallization rate increased with the sorption pressure and was at its maximum at a certain temperature under a constant pressure.  相似文献   

5.
The aim of this work was to investigate the properties of polyethylenes (PE) of various densities (low-density and high-density) under pressure of CO2 and propane. The phase equilibria of PE of different density in presence of CO2 and in presence of propane in dependence of pressure and temperature were investigated. The phase transitions of PE at atmospheric pressure were determined by differential scanning calorimetry (DSC). Furthermore, phase transitions of polymers under pressure of gases were measured by using an optical high pressure cell. Measurements of phase transition were performed in range of pressure of 1–90 MPa. The results show that melting points of LDPE decreased in presence of CO2 and in presence of propane. For high-density polyethylene (HDPE) the melting point decrease was observed only in presence of propane, while in presence of CO2 melting point increases with increasing pressure. The melting points of LDPE and HDPE decrease in average for 10–20 K in presence of propane, while in presence of CO2 the melting point decrease for both LDPE was lower (5–10 K). Solubility and diffusivity of supercritical CO2 in two low-density polyethylenes (LDPE) and in high-density polyethylene (HDPE) were measured at temperature 373 K and pressures up to 30 MPa using a magnetic suspension balance (MSB). The solubility data were used for estimating the binary diffusion coefficients. The solubilities increased with increasing density. The diffusion coefficient shows strong CO2 density and CO2 solubility dependence. Diffusion coefficient starts to decrease with increasing density and solubility of CO2.  相似文献   

6.
The frequency response of ferromagnetic nickel microcantilevers with lengths ranging between 200 μm and 400 μm immersed in gaseous, liquid and supercritical carbon dioxide (CO2) was investigated. The resonant frequency and the quality factor of the cantilever oscillations in CO2 were measured for each cantilever length in the temperature range between 298 K and 323 K and the pressure range between 0.1 MPa and 20.7 MPa. At a constant temperature, both the resonant frequency and the quality factor were found to decrease with increasing pressure as a result of the increasing CO2 density and viscosity. Very good agreement was found between the measured cantilever resonant frequencies and predictions of a model based on simplified hydrodynamic function of a cantilever oscillating harmonically in a viscous fluid valid for Reynolds numbers in the range of [1;1000] (average deviation of 2.40%). At high pressures of CO2, the experimental Q-factors agreed well with the predicted ones. At low CO2 pressures, additional internal mechanisms of the cantilever oscillation damping caused lowering of the measured Q-factor with respect to the hydrodynamic model predictions.  相似文献   

7.
1,3,5-tri-tert-butylbenzene (TTBB) is solid at ambient conditions, and has substantial solubility in liquid and supercritical carbon dioxide. We present the phase behavior of TTBB–CO2 binary system at temperatures between 298 and 328 K and at pressures up to 20 MPa. Phase diagrams showing the liquid–vapor, solid–liquid and solid–vapor equilibrium envelopes are constructed by pressure–volume–temperature measurements in a variable-volume sapphire cell. TTBB is highly soluble in CO2 over a wide range of compositions. Single-phase states are achieved at moderate pressures, even with very high TTBB concentrations. For example, at 328 K, a binary system containing TTBB at a concentration of 95% by weight forms a single-phase above 2.04 MPa. TTBB exhibits a significant melting-point depression in the presence of CO2, 45 K at 3.11 MPa, where the normal melting point of 343 K is reduced to 298 K. With its high solubility in carbon dioxide, TTBB has potential uses as a binder or template in materials forming processes using dense carbon dioxide.  相似文献   

8.
Supercritical CO2 provides considerable advantages over traditional solvents for the extraction of bioactive compounds from organic matter. Here we demonstrate the use of supercritical CO2 as an efficient and safe alternative to traditional solvent extraction for the recovery of bioactive Tyrian purple precursors tyrindoleninone, 6-bromoisatin and tyriverdin from the marine mollusc Dicathais orbita. The effect of pressure on the selective extraction of brominated indoles was tested at 15, 30 and 50 MPa CO2, and was compared to traditional chloroform extract composition and yields. Extracts obtained from 15 MPa selectively concentrated 6-bromoisatin, at 78% of the extract composition, whereas increased pressures of 30 and 50 MPa increased the solvating power of supercritical CO2 to include the more lipophilic tyrindoleninone at 35 and 29% respectively, and tyriverdin at 23 and 40% respectively. This extraction method was also effective in separating the brominated indoles from toxic choline esters in the mollusc extracts. Extract yields from supercritical CO2 were comparable to solvent extraction relative to whole whelk weight. This provides a viable alternative for nutraceutical development that does not rely on the use of toxic solvents.  相似文献   

9.
Density of CO2 saturated solutions of polyethylene glycols (PEGs) of different molecular weight was measured in pressure range from 8.0 MPa up to 47.7 MPa at a temperature of 343 K by a volumetric method. To validate the method density of pure CO2 was measured at different pressures and a temperature of 293 K. The results were compared to the literature data and the accuracy was better than 2%. The density was between 1.17 g/mL for PEG 1000/CO2 at 14.5 MPa and 1.78 g/mL for the system PEG 4000/CO2 at 35 MPa. Further, the data were compared to results, obtained by a gravimetric method using magnetic suspension balance (MSB).Viscosity of CO2 saturated solutions of polyethylene glycols (PEGs) of different molecular weight at different pressures and at a temperature of 343 K was measured using a high pressure view cell. Also a temperature impact on the viscosity of pure PEGs was observed at ambient pressure. After saturating PEG 1500 with 10 MPa of CO2 pressure its viscosity decreases from 76.6 mPa s to 2.24 mPa s at 333 K. Further addition of CO2 and increasing the pressure results in even lower viscosity and the highest viscosity reduction was reached at the highest pressure; at 35 MPa viscosity of the system PEG 1500/CO2 is only 0.665 mPa s.  相似文献   

10.
Recovery of phytosterol from roselle (Hibiscus sabdariffa L.) seeds via supercritical carbon dioxide extraction modified with ethanol was investigated at pressures of 200–400 bar, temperatures from 40 to 80 °C and at supercritical fluid flow rates from 10 to 20 ml/min. It was found that an entrainer such as ethanol could enhance the solubility and extraction yield of roselle seed oil from the seed matrix, compared to values obtained using supercritical CO2. After a typical run (holding period of 30 min, continuous flow extraction of 3 h), the results indicate that the oil recovery was optimal with a recovery of 108.74% and a phytosterol composition of 7262.80 mg kg?1 at relatively low temperature of 40 °C, a high pressure of 400 bar and at a high supercritical fluid flow rate of 20 ml/min in the presence of 2 ml/min EtOH as entrainer. The solubility of roselle seed oil increased with temperature at the operating pressures of 200, 300 and 400 bar. Supercritical fluid extraction involved a short extraction time and the minimal usage of small amounts of entrainer in the CO2.  相似文献   

11.
The impregnation of organic compounds in polymeric materials using supercritical carbon dioxide (scCO2) is a well-known technique, which is currently used in drug/polymer formulation. In this work, near critical and supercritical impregnation of thymol in linear low-density polyethylene (LLDPE) films was done in order to develop a new technique for preparation of active polymers to be used as food packages. The properties of thymol as a natural antimicrobial and antioxidant agent have motivated this study about the assessment of its migration from the polymer to different food simulant. Impregnation assays of thymol in LLDPE films were done in a high-pressure cell, where pure thymol was solubilized in supercritical carbon dioxide at 313 K and pressures varying from 7 to 12 MPa. This procedure allowed the preparation of plastic films with thymol concentrations ranged between 5100 and 13,200 ppm. Migration tests showed that the pressure applied during the impregnation procedure is a key parameter that affects the content of the active compound into the polymer, since thymol solubility in scCO2 and absorption phenomena in the polymer increased with the pressure. The correlation between experimental data and a phenomenological transfer model allowed the estimation of the diffusion coefficient of thymol in LLDPE, which was ranged from 7.5 × 10−13 to 3.0 × 10−12 m2 s−1.  相似文献   

12.
Particles of lysozyme in the range of 0.1–5 μm were generated by high pressure CO2 or N2 (at pressures between 8 MPa and 25 MPa) from aqueous ethanol solutions using an atomization process similar to the supercritical assisted atomization technology. Perfect nanosized spheres of lysozyme were produced using both supercritical fluids. However, while N2 assisted atomization-produced spheres at all experimental conditions reported here, supercritical CO2 assisted atomization produced particles of two distinct morphologies depending on the pre-mixing conditions. This work shows that CO2 assisted atomization produces particles by two different mechanisms depending on the mixture pre-expansion phase equilibria conditions: anti-solvent crystallization and spray drying crystallization. Depending on the governing precipitation mechanism (anti-solvent or spray drying), fibers or spherical particles were obtained with CO2. Lysozyme activity was severely affected by pure anti-solvent processing, while N2 processed lysozyme conserved mostly its activity.  相似文献   

13.
It was well known that electrospinning is one of the simple technical methods for the production of polymer nanoparticles and nanofibers. Various polymers have been successfully electrospun into ultrafine particles and fibers in recent years mostly in solvent solution and some in melt form. In this work, hollow fibers with walls made of organic polymer composites have been formed by electrospinning in a single processing step under pressurized carbon dioxide (CO2). The experiments were conducted at 313 K and ∼8 MPa. The capability and feasibility of this technique was demonstrated by the production of polyvinylpyrrolidone (PVP) fibers whose size and wall thickness could be independently varied by controlling a set of experimental parameters. The PVP fibers had an average pore diameter 2–4 μm. At low pressures (<5 MPa; subcritical conditions), the solid fibers were formed, the baloon-like structures of PVP was formed with increasing pressure of CO2 at 8 MPa (supercritical condition)  相似文献   

14.
The performance of a Kenics static mixer as a heat-transfer device for supercritical carbon dioxide (CO2) flow is studied and compared with conventional tube-in-tube heat exchangers. Measurements were carried out at pressures ranging from 8 to 21 MPa, temperatures from 283 to 323 K, and mass flowrates from 2 to 15 kg/h. The corresponding Reynolds and Prandtl numbers, at bulk conditions, ranged between 103 and 2 × 104 and between 2 and 7, respectively. The temperature increase experienced by the supercritical CO2 stream varied between 10 and 35 K. The heat fluxes obtained with the static mixer are one order of magnitude higher than the ones observed with a tube-in-tube heat exchanger for the same set of operating conditions. The heat-transfer enhancement is caused by the cross-sectional mixing of the fluid and to a lesser extent by conduction across the metallic mixing elements. Heat-transfer is also affected by temperature-induced variation of physical properties, especially in the pseudocritical region of the fluid. From the experimental data, a correlation was developed for convective heat-transfer to supercritical CO2 in terms of the Nusselt number.  相似文献   

15.
Phase equilibrium data of caffeine, vanillin, o-ethyl vanillin and a natural rosemary extract (containing 73.9% carnosic acid and 14.7% carnosol) in argon have been determined in present work.Solubility data were determined at temperatures of 313.15 K, 333.15 K and 363.15 K and in the pressure range from 0.82 MPa up to 50.27 MPa using a static–analytic method and were compared to solubility data of the same substances in CO2.Maximal solubility of vanillin in argon was obtained at a temperature of 313.15 K and a pressure of 43.8 MPa, approx. 0.015 g/g. Comparing the solubility data of pure vanillin in argon and in CO2 higher solubility in argon is observed at lower temperatures and pressures. For o-ethyl vanillin the solubility in argon is higher in comparison to solubility in CO2 in the entire range of pressure, especially at higher temperatures.Maximal solubility of caffeine in argon was observed at a temperature of 363.15 K 0.001361 g caffeine/g argon at 38.9 MPa. With increasing pressure solubility increases, while temperature does not have a noticeable impact in the temperature range from 313.15 K to 333.15 K; the solubility increased with increasing temperature to 363.15 K. Similarly, solubility of carnosic acid extract increases with increasing pressure, from about 0.0097 × 10−2 g substance/g gas at 2.08 MPa and at 313.15 K to 0.0338 × 10−2 g substance/g gas at 50.27 MPa and at 363.15 K.Solubility of the investigated compounds in argon is a function of both, pressure and temperature. Generally, pressure significantly impacts solubility particularly up to a pressure of 20.0 MPa in case of vanillin and up to 30 MPa in case of o-ethyl vanillin and carnosic acid extract. An additional increase of pressure has only a slight impact on solubility. In the case of caffeine, the impact of pressure on the solubility becomes more evident at pressures higher than 20 MPa.  相似文献   

16.
The solubilities of caffeine in supercritical CO2, supercritical CO2 + water, supercritical CO2 + ethanol, and supercritical CO2 + water + ethanol were measured with a circulation-type apparatus combined with an on-line Fourier transform infrared (FT-IR) spectrometer at 313.2 K and 15.0 MPa. The solubilities of caffeine were determined with the peak absorbances of caffeine at 1190 cm−1. The solubilities of caffeine increase until water is saturated in supercritical CO2. The maximum increase rate is 22%. In CO2 + caffeine + ethanol system, the solubilities of caffeine increase with increasing the concentration of ethanol. The solubility of caffeine becomes five times when 1000 mol m−3 of ethanol is added. In CO2 + caffeine + water + ethanol system, the solubilities of caffeine are smaller than those with single entrainer of water or ethanol. The shape of the peaks of two CO stretching bands for caffeine were changed by the addition of ethanol. It was confirmed that the interaction species of caffeine interacting with ethanol are produced by deconvolution of the CO stretching bands. The enhancement of solubility for caffeine in supercritical CO2 by the addition of ethanol is due to the hydrogen bonding between caffeine and ethanol.  相似文献   

17.
Utilization of supercritical CO2 in safflower seed extraction was performed using a semi-batch extractor. Different extraction parameters, such as 40–60 MPa pressure, 323–347 K temperature, 20–76 min time, and 1–3 mL/min CO2 flow rate were applied. A two-stage experimental design application was performed in order to maximize the oil yield. First of all, a 32 factorial design was applied to estimate the effect of the main factors and their interactions. The second part of the experimental design was improved and accelerated using the steepest ascent method. Optimum extraction parameters were determined to be 50 MPa pressure, 347 K temperature and 76 min time at a constant CO2 flow rate (3 mL/min) according to the 22 design. Under these conditions, the oil yield obtained was 39.42%, comparable with Soxhlet extraction (40%) for 8 h. Shrinking core and empirical kinetic models were applied in order to generalize the extraction process. The predicted data was compatible with the experimental data.  相似文献   

18.
The use of supercritical carbon dioxide (SC⿿CO2), with water as a modifier, was evaluated in this study as a method to extract protocatechuic acid (PA) from Scutellaria barbata D. Don. The highest extraction yield of PA, 64.094 ± 2.756 μg/g of dry plant, was achieved at 75 °C and 27.5 MPa, with the addition of 15.6% (v/v) water as a modifier. The mean particle size was 0.355 mm, the CO2 flow rate was 2.2 mL/min (STP) and the dynamic extraction time was 100 min. At pressures of 16.2⿿30.0 MPa and temperatures of 45⿿75 °C, the mole fraction solubilities of PA in SC⿿CO2 ranged from 2.829 ÿ 10⿿7 to 9.631 ÿ 10⿿7. The solubility data for PA fit well in the Chrastil model. It is evident that the SC⿿CO2 extraction uses less solvent, saves both energy and time and is an environmentally friendly extract technology that can be used in the food, cosmetic and pharmaceutical industries.  相似文献   

19.
Since the knowledge of pharmaceutical solubilities in the supercritical carbon dioxide is one of the first essential necessities for designing the supercritical carbon dioxide-based processes, solubility of piroxicam a non-steroidal anti-inflammatory drug was experimentally measured. In this regard, a static method coupled with gravimetric method was used to measure the solubility of piroxicam in the supercritical carbon dioxide in temperature and pressure range of 308.15–338.15 K and 16–40 MPa, respectively. The obtained solubility data were in the range of 1.17 × 10−5 and 5.12 × 10−4 based on the mole fraction (mole piroxicam/(mole piroxicam + mole CO2)) then modeled using four different density based correlations namely Bartle et al., Mendez-Santiago-Teja, Chrastil and Kumar and Johnston models. The results of error analysis revealed that the used correlations were potential to correlate the solubility of piroxicam with minimum and maximum average absolute relative deviation percents (AARD%) of 14.4% and 15.2%, respectively.  相似文献   

20.
Through this study, an attempt has been made to evaluate the solubility of thymol in supercritical carbon dioxide as well to investigate a prospect of its impregnation on cotton gauze on laboratory scale. Solubility of thymol in supercritical carbon dioxide was determined at temperatures of 35 °C, 40 °C and 50 °C, and pressures ranging from 7.8 to 25 MPa (CO2 density range 335.89–849.60 kg/m3) using a static method. The solubility data were correlated using semi-empirical equations introduced by Chrastil, Adachi and Lu and del Valle and Aguilera. Taking into account obtained results, temperature of 35 °C and pressure of 15.5 MPa were selected as operating conditions for the impregnation process. Impregnation of cotton gauze with thymol was performed in a cell using carbon dioxide as a solvent. Kinetics of the process was determined and modeled. Masses of thymol on cotton gauzes after 2 h and 24 h of impregnation were 11% and 19.6%, respectively. FT-IR analysis confirmed the presence of thymol on the surface of the cotton fibers. The impregnated gauze provided strong antimicrobial activity against tested strains of Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis and Candida albicans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号