首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Recently, various immunosuppressant drugs have been shown to induce hair growth in normal hair as well as in alopecia areata and androgenic alopecia; however, the responsible mechanism has not yet been fully elucidated. In this study, we investigate the influence of mycophenolate (MPA), an immunosuppressant, on the proliferation of human dermal papilla cells (hDPCs) and on the growth of human hair follicles following catagen induction with interferon (IFN)-γ. IFN-γ was found to reduce β-catenin, an activator of hair follicle growth, and activate glycogen synthase kinase (GSK)-3β, and enhance expression of the Wnt inhibitor DKK-1 and catagen inducer transforming growth factor (TGF)-β2. IFN-γ inhibited expression of ALP and other dermal papillar cells (DPCs) markers such as Axin2, IGF-1, and FGF 7 and 10. MPA increased β-catenin in IFN-γ-treated hDPCs leading to its nuclear accumulation via inhibition of GSK3β and reduction of DKK-1. Furthermore, MPA significantly increased expression of ALP and other DPC marker genes but inhibited expression of TGF-β2. Therefore, we demonstrate for the first time that IFN-γ induces catagen-like changes in hDPCs and in hair follicles via inhibition of Wnt/β-catenin signaling, and that MPA stabilizes β-catenin by inhibiting GSK3β leading to increased β-catenin target gene and DP signature gene expression, which may, in part, counteract IFN-γ-induced catagen in hDPCs.  相似文献   

2.
3.
4.
5.
6.
The Wnt/β-catenin pathway plays an important role in tumor progression and chemotherapy resistance and seems to be essential for the maintenance of cancer stem cells (CSC) in several tumor types. However, the interplay of these factors has not been fully addressed in bladder cancer. Here, our goal was to analyze the role of the Wnt/β-catenin pathway in paclitaxel resistance and to study the therapeutic efficacy of its inhibition in bladder cancer cells, as well as to determine its influence in the maintenance of the CSC-like phenotype in bladder cancer. Our results show that paclitaxel-resistant HT1197 cells have hyperactivation of the Wnt/β-catenin pathway and increased CSC-like properties compared with paclitaxel-sensitive 5637 cells. Paclitaxel sensitivity diminishes in 5637 cells after β-catenin overexpression or when they are grown as tumorspheres, enriched for the CSC-like phenotype. Additionally, downregulation of β-catenin or inhibition with XAV939 sensitizes HT1197 cells to paclitaxel. Moreover, a subset of muscle-invasive bladder carcinomas shows aberrant expression of β-catenin that associates with positive expression of the CSC marker ALDH1A1. In conclusion, we demonstrate that Wnt/β-catenin signaling contributes to paclitaxel resistance in bladder cancer cells with CSC-like properties.  相似文献   

7.
Isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) is a fast growing and highly heterogeneous tumor, often characterized by the presence of glioblastoma stem cells (GSCs). The plasticity of GSCs results in therapy resistance and impairs anti-tumor immune response by influencing immune cells in the tumor microenvironment (TME). Previously, β-catenin was associated with stemness in GBM as well as with immune escape mechanisms. Here, we investigated the effect of β-catenin on attracting monocytes towards GBM cells. In addition, we evaluated whether CCL2 is involved in β-catenin crosstalk between monocytes and tumor cells. Our analysis revealed that shRNA targeting β-catenin in GBMs reduces monocytes attraction and impacts CCL2 secretion. The addition of recombinant CCL2 restores peripheral blood mononuclear cells (PBMC) migration towards medium (TCM) conditioned by shβ-catenin GBM cells. CCL2 knockdown in GBM cells shows similar effects and reduces monocyte migration to a similar extent as β-catenin knockdown. When investigating the effect of CCL2 on β-catenin activity, we found that CCL2 modulates components of the Wnt/β-catenin pathway and alters the clonogenicity of GBM cells. In addition, the pharmacological β-catenin inhibitor MSAB reduces active β-catenin, downregulates the expression of associated genes and alters CCL2 secretion. Taken together, we showed that β-catenin plays an important role in attracting monocytes towards GBM cells in vitro. We hypothesize that the interactions between β-catenin and CCL2 contribute to maintenance of GSCs via modulating immune cell interaction and promoting GBM growth and recurrence.  相似文献   

8.
Apoptosis of alveolar macrophages following Mycobacterium tuberculosis infection have been demonstrated to play a central role in the pathogenesis of tuberculosis. In the present study, we found that Wnt/β-catenin signaling possesses the potential to promote macrophage apoptosis in response to mycobacterial infection. In agreement with other findings, an activation Wnt/β-catenin signaling was observed in murine macrophage RAW264.7 cells upon Mycobacterium bovis Bacillus Calmette-Guerin (BCG) infection at a multiple-of-infection of 10, which was accompanied with up-regulation of pro-inflammatory cytokines TNF-α and IL-6 production. However, the BCG-induced TNF-α and IL-6 secretion could be significantly reduced when the cells were exposed to a canonical Wnt signaling ligand, Wnt3a. Importantly, the activation of Wnt/β-catenin signaling was able to further promote apoptosis in BCG-infected RAW264.7 cells in part by a mitochondria-dependent apoptosis pathway. Immunoblotting analysis further demonstrated that Wnt/β-catenin signaling-induced cell apoptosis partly through a caspase-dependent apoptosis mechanism by down-regulation of anti-apoptotic protein Mcl-1, and up-regulation of pro-apoptotic proteins Bax and cleaved-caspase-3, as well as enhancement of caspase-3 activity in BCG-infected RAW264.7 cells. These data may imply an underlying mechanism of alveolar macrophages in response to mycobacterial infection, by which the pathogen induces Wnt/β-catenin signaling activation, which in turn represses mycobacterium-trigged inflammatory responses and promotes mycobacteria-infected cell apoptosis.  相似文献   

9.
Glaucoma is a progressive neurodegenerative disease which constitutes the main frequent cause of irreversible blindness. Recent findings have shown that oxidative stress, inflammation and glutamatergic pathway play key roles in the causes of glaucoma. Recent studies have shown a down regulation of the WNT/β-catenin pathway in glaucoma, associated with overactivation of the GSK-3β signaling. WNT/β-catenin pathway is mainly associated with oxidative stress, inflammation and glutamatergic pathway. Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis sativa plant which possesses many therapeutic properties across a range of neuropsychiatric disorders. Since few years, CBD presents an increased interest as a possible drug in anxiolytic disorders. CBD administration is associated with increase of the WNT/β-catenin pathway and decrease of the GSK-3β activity. CBD has a lower affinity for CB1 but can act through other signaling in glaucoma, including the WNT/β-catenin pathway. CBD downregulates GSK3-β activity, an inhibitor of WNT/β-catenin pathway. Moreover, CBD was reported to suppress pro-inflammatory signaling and neuroinflammation, oxidative stress and glutamatergic pathway. Thus, this review focuses on the potential effects of cannabidiol, as a potential therapeutic strategy, on glaucoma and some of the presumed mechanisms by which this phytocannabinoid provides its possible benefit properties through the WNT/β-catenin pathway.  相似文献   

10.
Antimicrobial peptides (AMPs), which are natural antibiotics, protect against pathogens invading the urinary tract. RNase 7 with antimicrobial properties has rapid and powerful suppressive effects against Gram-positive and Gram-negative bacterial infections. However, its detailed antibacterial mechanisms have not been fully determined. Here, we investigate whether RNase 7 had an impact on bladder cells under uropathogenic Escherichia coli (UPEC) infection in a high-glucose environment using in vitro GFP-UPEC-infected bladder cell and PE-labeled TLR4, STAT1, and STAT3 models. We provide evidence of the suppressive effects of RNase 7 on UPEC infection and UPEC-induced inflammatory responses by regulating the JAK/STAT signaling pathway using JAK inhibitor and STAT inhibitor blocking experiments. Pretreatment with different concentrations of RNase 7 for 24 h concentration-dependently suppressed UPEC invasion in bladder cells (5 μg/mL reducing 45%; 25 μg/mL reducing 60%). The expressions of TLR4, STAT1, and STAT3 were also downregulated in a concentration-dependent manner after RNase 7 pretreatment (5 μg/mL reducing 35%, 54% and 35%; 25 μg/mL reducing 60%, 75% and 64%, respectively). RNase 7-induced decrease in UPEC infection in a high-glucose environment not only downregulated the expression of TLR4 protein and the JAK/STAT signaling pathway but also decreased UPEC-induced secretion of exogenous inflammatory IL-6 and IL-8 cytokines, although IL-8 levels increased in the 25 μg/mL RNase 7-treated group. Thus, inhibition of STAT affected pSTAT1, pSTAT3, and TLR4 expression, as well as proinflammatory IL-6 and IFN-γ expression. Notably, blocking JAK resulted in the rebound expression of related proteins, especially pSTAT1, TLR4, and IL-6. The present study showed the suppressive effects of RNase 7 on UPEC infection and induced inflammation in bladder epithelial cells in a high-glucose environment. RNase 7 may be an anti-inflammatory and anti-infective mediator in bladder cells by downregulating the JAK/STAT signaling pathway and may be beneficial in treating cystitis in DM patients. These results will help clarify the correlation between AMP production and UTI, identify the relationship between urinary tract infection and diabetes in UTI patients, and develop novel diagnostics or possible treatments targeting RNase 7.  相似文献   

11.
Adenosine is a cellular metabolite with diverse derivatives that possesses a wide range of physiological roles. We investigated the molecular mechanisms of adenosine and cordycepin for their promoting effects in wound-healing process. The mitochondrial energy metabolism and cell proliferation markers, cAMP responsive element binding protein 1 (CREB1) and Ki67, were enhanced by adenosine and cordycepin in cultured dermal fibroblasts. Adenosine and cordycepin stimulated adenosine receptor signaling via elevated cAMP. The phosphorylation of mitogen-activated protein kinase kinase (MEK) 1/2, mammalian target of rapamycin (mTOR) and glycogen synthase kinase 3 beta (Gsk3b) and Wnt target genes such as bone morphogenetic protein (BMP) 2/4 and lymphoid enhancer binding factor (Lef) 1 were activated. The enhanced gene expression by adenosine and cordycepin was abrogated by adenosine A2A and A2B receptor inhibitors, ZM241385 and PSH603, and protein kinase A (PKA) inhibitor H89, indicating the involvement of adenosine receptor A2A, A2B and PKA. As a result of Wnt/β-catenin pathway activation, the secretion of growth factors such as insulin-like growth factor (IGF)-1 and transforming growth factor beta (TGFβ) 3 was increased, previously reported to facilitate the wound healing process. In addition, in vitro fibroblast migration was also increased, demonstrating their possible roles in facilitating the wound healing process. In conclusion, our data strongly demonstrate that adenosine and cordycepin stimulate the Wnt/β-catenin signaling through the activation of adenosine receptor, possibly promoting the tissue remodeling process and suggest their therapeutic potential for treating skin wounds.  相似文献   

12.
Increasing studies identified podocyte injury as a key early risk factor resulting in diabetic nephropathy (DN). The ubiquitin carboxy-terminal hydrolase 1 (UCH-L1) participates in podocyte differentiation and injury, which is elevated in the podocytes of a variety of nephritis. Whether UCH-L1 expression is positively related to podocyte injury of DN remains unclear. In this study, elevated expression of UCH-L1 and its intrinsic mechanism in high glucose (HG)-stimulated murine podocytes were investigated using western blot and real-time quantitative PCR. Kidney biopsies of DN patients and health individuals were stained by immunofluorescence (IF) method. The morphological and functional changes of podocytes were tested by F-actin staining and cell migration assay. Results demonstrated that HG induced upregulation of UCH-L1 and activation of the Wnt/β-catenin signaling pathway in podocytes. However, blocking of the Wnt pathway by dickkopf related protein 1 (DKK1) eliminated the above changes. Furthermore, IF staining confirmed that, compared with healthy individuals, the expression of UCH-L1 and β-catenin were obviously increased in kidney biopsy of DN patients. Overexpression of UCH-L1 remodeled its actin cytoskeleton, increased its cell migration and impacted its important proteins. All the findings manifested that Wnt/β-catenin/UCH-L1 may be a new potential therapy method in the treatment of DN in future.  相似文献   

13.
Recent experiments have explored the impact of Wnt/β-catenin signaling and Substance P (SP) on the regulation of osteogenesis. However, the molecular regulatory mechanisms of SP on the formation of osteoblasts is still unknown. In this study, we investigated the impact of SP on the differentiation of MC3T3-E1 cells. The osteogenic effect of SP was observed at different SP concentrations (ranging from 10−10 to 10−8 M). To unravel the underlying mechanism, the MC3T3-E1 cells were treated with SP after the pretreatment by neurokinin-1 (NK1) antagonists and Dickkopf-1 (DKK1) and gene expression levels of Wnt/β-catenin signaling pathway components, as well as osteoblast differentiation markers (collagen type I, alkaline phosphatase, osteocalcin, and Runx2), were measured using quantitative polymerase chain reaction (PCR). Furthermore, protein levels of Wnt/β-catenin signaling pathway were detected using Western blotting and the effects of SP, NK1 antagonist, and DKK1 on β-catenin activation were investigated by immunofluorescence staining. Our data indicated that SP (10−9 to 10−8 M) significantly up-regulated the expressions of osteoblastic genes. SP (10−8 M) also elevated the mRNA level of c-myc, cyclin D1, and lymphocyte enhancer factor-1 (Lef1), as well as c-myc and β-catenin protein levels, but decreased the expression of Tcf7 mRNA. Moreover, SP (10−8 M) promoted the transfer of β-catenin into nucleus. The effects of SP treatment were inhibited by the NK1 antagonist and DKK1. These findings suggest that SP may enhance differentiation of MC3T3-E1 cells via regulation of the Wnt/β-catenin signaling pathway.  相似文献   

14.
Studies have shown that bone marrow-derived mesenchymal stem cells (BMSCs) can differentiate into dermal fibroblasts to participate in skin-repairing. However, at present, little is known about how microgravity affects dermal fibroblastic differentiation of BMSCs in space. The aim of this study was to investigate the effect of simulated microgravity (SMG) on the differentiation of BMSCs into dermal fibroblasts and the related molecular mechanism. Here, using a 2D-clinostat device to simulate microgravity, we found that SMG inhibited the differentiation and suppressed the Wnt/β-catenin signaling and phosphorylation of extracellular regulated protein kinases 1/2 (ERK1/2). After upregulating the Wnt/β-catenin signaling with lithium chloride (LiCl) treatment, we found that the effect of the differentiation was restored. Moreover, the Wnt/β-catenin signaling was upregulated when phosphorylation of ERK1/2 was activated with tert-Butylhydroquinone (tBHQ) treatment. Taken together, our findings suggest that SMG inhibits dermal fibroblastic differentiation of BMSCs by suppressing ERK/β-catenin signaling pathway, inferring that ERK/β-catenin signaling pathway may act as a potential intervention target for repairing skin injury under microgravity conditions.  相似文献   

15.
16.
Skullcapflavone II (SFII), a flavonoid derived from Scutellaria baicalensis, has been reported to have anti-inflammatory properties. However, its therapeutic potential for skin inflammatory diseases and its mechanism are unknown. Therefore, this study aimed to investigate the effect of SFII on TNF-α/IFN-γ-induced atopic dermatitis (AD)-associated cytokines, such as thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC). Co-stimulation with TNF-α/IFN-γ in HaCaT cells is a well-established model for induction of pro-inflammatory cytokines. We treated cells with SFII prior to TNF-α/IFN-γ-stimulation and confirmed that it significantly inhibited TARC and MDC expression at the mRNA and protein levels. Additionally, SFII also inhibited the expression of cathepsin S (CTSS), which is associated with itching in patients with AD. Using specific inhibitors, we demonstrated that STAT1, NF-κB, and p38 MAPK mediate TNF-α/IFN-γ-induced TARC and MDC, as well as CTSS expression. Finally, we confirmed that SFII significantly suppressed TNF-α/IFN-γ-induced phosphorylation of STAT1, NF-κB, and p38 MAPK. Taken together, our study indicates that SFII inhibits TNF-α/IFN-γ-induced TARC, MDC, and CTSS expression by regulating STAT1, NF-κB, and p38 MAPK signaling pathways.  相似文献   

17.
In renal cell carcinoma (RCC), single members of the Wnt/β-catenin signaling cascade were recently identified to contribute to cancer progression. However, the role of Wnt1, one of the key ligands in β-catenin regulation, is currently unknown in RCC. Therefore, alterations of the Wnt1/β-catenin axis in clear cell RCC (ccRCC) were examined with regard to clinicopathology, overall survival (OS) and cancer specific survival (CSS). Corresponding ccRCCs and benign renal tissue were analyzed in 278 patients for Wnt1 and β-catenin expression by immunohistochemistry in tissue microarrays. Expression scores, including intensity and percentage of stained cells, were compared between normal kidney and ccRCCs. Data was categorized according to mean expression scores and correlated to tumor and patients’ characteristics. Survival was analyzed according to the Kaplan-Meier and log-rank test. Univariable and multivariable Cox proportional hazard regression models were used to explore the independent prognostic value of Wnt1 and β-catenin. In ccRCCs, high Wnt1 was associated with increased tumor diameter, stage and vascular invasion (p ≤ 0.02). High membranous β-catenin was associated with advanced stage, vascular invasion and tumor necrosis (p ≤ 0.01). Higher diameter, stage, node involvement, grade, vascular invasion and sarcomatoid differentiation (p ≤ 0.01) were found in patients with high cytoplasmic β-catenin. Patients with a high cytoplasmic β-catenin had a significantly reduced OS (hazard ratio (HR) 1.75) and CSS (HR 2.26), which was not independently associated with OS and CSS after adjustment in the multivariable model. Increased ccRCC aggressiveness was reflected by an altered Wnt1/β-catenin signaling. Cytoplasmic β-catenin was identified as the most promising candidate associated with unfavorable clinicopathology and impaired survival. Nevertheless, the shift of membranous β-catenin to the cytoplasm with a subsequently increased nuclear expression, as shown for other malignancies, could not be demonstrated to be present in ccRCC.  相似文献   

18.
Synovial fluid contains cytokines, growth factors and resident mesenchymal stem cells (MSCs). The present study aimed to (1) determine the effects of autologous and allogeneic synovial fluid on viability, proliferation and chondrogenesis of equine bone marrow MSCs (BMMSCs) and (2) compare the immunomodulatory properties of equine synovial fluid MSCs (SFMSCs) and BMMSCs after stimulation with interferon gamma (INF-γ). To meet the first aim of the study, the proliferation and viability of MSCs were evaluated by MTS and calcein AM staining assays. To induce chondrogenesis, MSCs were cultured in a medium containing TGF-β1 or different concentrations of synovial fluid. To meet the second aim, SFMSCs and BMMSCs were stimulated with IFN-γ. The concentration of indoleamine-2,3-dioxygenase (IDO) and nitric oxide (NO) were examined. Our results show that MSCs cultured in autologous or allogeneic synovial fluid could maintain proliferation and viability activities. Synovial fluid affected chondrocyte differentiation significantly, as indicated by increased glycosaminoglycan contents, compared to the chondrogenic medium containing 5 ng/mL TGF-β1. After culturing with IFN-γ, the conditioned media of both BMMSCs and SFMSCs showed increased concentrations of IDO, but not NO. Stimulating MSCs with synovial fluid or IFN-γ could enhance chondrogenesis and anti-inflammatory activity, respectively, suggesting that the joint environment is suitable for chondrogenesis.  相似文献   

19.
The majority of patients with testicular germ cell tumors (GCTs) can be cured with cisplatin-based chemotherapy. However, for a subset of patients present with cisplatin-refractory disease, which confers a poor prognosis, the treatment options are limited. Novel therapies are therefore urgently needed to improve outcomes in this challenging patient population. It has previously been shown that Wnt/β-catenin signaling is active in GCTs suggesting that its inhibitors LGK974 and PRI-724 may show promise in the management of cisplatin-refractory GCTs. We herein investigated whether LGK-974 and PRI-724 provide a treatment effect in cisplatin-resistant GCT cell lines. Taking a genoproteomic approach and utilizing xenograft models we found the increased level of β-catenin in 2 of 4 cisplatin-resistant (CisR) cell lines (TCam-2 CisR and NCCIT CisR) and the decreased level of β-catenin and cyclin D1 in cisplatin-resistant NTERA-2 CisR cell line. While the effect of treatment with LGK974 was limited or none, the NTERA-2 CisR exhibited the increased sensitivity to PRI-724 in comparison with parental cell line. Furthermore, the pro-apoptotic effect of PRI-724 was documented in all cell lines. Our data strongly suggests that a Wnt/β-catenin signaling is altered in cisplatin-resistant GCT cell lines and the inhibition with PRI-724 is effective in NTERA-2 CisR cells. Further evaluation of Wnt/β-catenin pathway inhibition in GCTs is therefore warranted.  相似文献   

20.
The therapeutic activities of natural plant extracts have been well known for centuries. Many of them, in addition to antiviral and antibiotic effects, turned out to have anti-tumor activities by targeting different signaling pathways. The canonical Wnt pathway represents a major tumorigenic pathway deregulated in numerous tumor entities, including colon cancer. Here, we investigated the acylphloroglucinols hyperforin (HF) from St. John’s wort (Hypericum perforatum L.) and myrtucommulone A (MC A) from myrtle (Myrtus communis) and semi-synthetic derivatives thereof (HM 177, HM 297, HM298) for their effects on Wnt/β-catenin signaling. None of these substances revealed major cytotoxicity on STF293 embryonic kidney and HCT116 colon carcinoma cells at concentrations up to 10 μM. At this concentration, HF and HM 177 showed the strongest effect on cell proliferation, whereas MC A and HM 177 most prominently inhibited anchorage-independent growth of HCT116 cells. Western blot analyses of active β-catenin and β-catenin/TCF reporter gene assays in STF293 cells revealed inhibitory activities of HF, MC A and HM 177. In line with this, the expression of endogenous Wnt target genes, Axin and Sp5, in HCT116 cells was significantly reduced. Our data suggest that the acylphloroglucinols hyperforin, myrtucommulone A and its derivative HM 177 represent potential new therapeutic agents to inhibit Wnt/β-catenin signaling in colon cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号