首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study energy, exergy and exergoeconomic analysis of the Afyon geothermal district heating system (AGDHS) in Afyon, Turkey is performed through thermodynamic performances and thermo-economic assessments. In the analysis, actual system data are used to assess the district heating system performance, energy and exergy efficiencies, exergy losses and loss cost rates. Energy and exergy losses throughout the AGDHS are quantified and illustrated in the flow diagram. The energy and exergy efficiencies of the overall system are found to be 37.59% and 47.54%, respectively. The largest exergy loss occurs in the heat exchangers with 14.59% and then in the reinjection wells with 14.09%. Besides, thermo-economic evaluations of the AGDHS are given in table. Energy and exergy loss rates for the AGDHS are estimated to be 5.36 kW/$ and 0.2  kW/$, respectively.  相似文献   

2.
Y.B. Tao  Y.L. He  Z.G. Qu 《Solar Energy》2012,86(5):1155-1163
Based on enthalpy method, numerical studies were performed for high temperature molten salt phase change thermal energy storage (PCTES) unit used in a dish solar thermal power generation system. Firstly, the effects of the heat transfer fluid (HTF) inlet temperature and velocity on the PCTES performance were examined. The results show that although increasing the HTF inlet velocity or temperature can enhance the melting rate of the phase change material (PCM) and improve the performance of the PCTES unit, the two parameters will restrict each other for the fixed solar collector heat output. Then three enhanced tubes were adopted to improve the PCTES performance, which are dimpled tube, cone-finned tube and helically-finned tube respectively. The effects of the enhanced tubes on the PCM melting rate, solid–liquid interface, TES capacity, TES efficiency and HTF outlet temperature were discussed. The results show that compared with the smooth tube, all of the three enhanced tubes could improve the PCM melting rate. At the same working conditions, the melting time is 437.92 min for the smooth tube, 350.75 min for dimpled tube which is reduced about 19.9% and 320.25 min for cone-finned tube which is reduced about 26.9% and 302.75 min for helically-finned tube reduced about 30.7%. As a conclusion, the thermal performance of PCTES unit can be effectively enhanced by using enhanced tube instead of smooth tube. Although, the HTF pressure drops for the enhanced tubes are also larger than that of the smooth tube, the largest pressure drop (1476.2 Pa) is still very lower compared with the working pressure (MPa magnitude) of the dish solar generation system. So, the pressure drops caused by the enhanced tubes could almost be neglected.  相似文献   

3.
The energy and exergy analyses of the drying process of olive mill wastewater (OMW) using an indirect type natural convection solar dryer are presented. Olive mill wastewater gets sufficiently dried at temperatures between 34 °C and 52 °C. During the experimental process, air relative humidity did not exceed 58%, and solar radiation ranged from 227 W/m2 to 825 W/m2. Drying air mass flow was maintained within the interval 0.036–0.042 kg/s. Under these experimental conditions, 2 days were needed to reduce the moisture content to approximately one-third of the original value, in particular from 3.153 gwater/gdry matter down to 1.000 gwater/gdry matter.Using the first law of thermodynamics, energy analysis was carried out to estimate the amounts of energy gained from solar air heater and the ratio of energy utilization of the drying chamber. Also, applying the second law, exergy analysis was developed to determine the type and magnitude of exergy losses during the solar drying process. It was found that exergy losses took place mainly during the second day, when the available energy was less used. The exergy losses varied from 0 kJ/kg to 0.125 kJ/kg for the first day, and between 0 kJ/kg and 0.168 kJ/kg for the second. The exergetic efficiencies of the drying chamber decreased as inlet temperature was increased, provided that exergy losses became more significant. In particular, they ranged from 53.24% to 100% during the first day, and from 34.40% to 100% during the second.  相似文献   

4.
This paper reports the results of the most complete conceptual study conducted to date on hydrogen production using the hybrid chlorine cycle. Three alternative process flow sheets were developed, each capable of producing hydrogen at 35 °C (308 K) and 21 bar. The alternative approaches differ primarily in the way HCl is isolated and converted to hydrogen and chlorine gases. Aspen Plus? simulation software was used to model the unit processes, supplemented where necessary by custom Excel spreadsheets. Major equipment was sized for a 200-million kg/yr plant; feasible materials of construction were identified; fixed capital investments and variable costs were estimated. Estimated net thermal efficiencies of the flow sheets range from 30% to 36%, based on the lower heating value of the hydrogen produced. With electrical power valued at $0.05/kWh, the cost of hydrogen produced by the hybrid chlorine cycle would be at least $3/kg. These results indicate that direct electrolysis of water is a more attractive way to produce hydrogen than any presently conceived version of the hybrid chlorine cycle.  相似文献   

5.
The dynamic characteristics of solar heat storage system with spherical capsules packed bed during discharging process are studied. According to the energy balance of solar heat storage system, the dynamic discharging processes model of packed bed with spherical capsules is presented. Paraffin is taken as phase change material (PCM) and water is used as heat transfer fluid (HTF). The temperatures of PCM and HTF, solid fraction and heat released rate are simulated. The effects of inlet temperature of HTF, flow rate of HTF and porosity of packed bed on the time for discharging and heat released rate are also discussed. The following conclusion can be drawn: (1) the heat released rate is very high and decreases rapidly with time during the liquid cooling stage, it is stable at the solidification cooling stage, then it decreases to zero at the solid cooling stage. (2) The time for complete solidification decreases when the HTF flow rate increases, but the effect is not so obvious when the HTF flow rate is higher than 13 kg/min; (3) compared to the HTF inlet temperature and flow rate, the influence of porosity of packed bed on the time for complete solidification is not so significant.  相似文献   

6.
Ahmed A.A. Attia 《Solar Energy》2012,86(9):2486-2493
As Natural resources are becoming limited and energy price dramatically increased, energy utilization with efficient systems is essentially required to be used in desalination technologies. The use of solar energy in desalination processes is one of the most promising applications of renewable energies. The primary focus on desalination by solar energy is suitable for use in remote areas. A proposed desalination system uses solar radiation, which concentrated by parabolic dish to heat up the working fluid in a closed space. Then the generated pressure in this space used to push salt water into RO module.Daily production rate of fresh water quantity for suggested system compared with other solar techniques is a promising rate for each m2 of solar radiation collecting surface. The production rate for one operation cycle could reach to 1800 L/cycle of fresh water at low water salinity (Brackish water with 5000 ppm) and 55 L/cycle at highest water salinity (sea water salinity with 42,000 ppm). The required energy needed to produce 1 kg of fresh water is also promising even when in case of using another type of energy, also operating cycle has ability of repetition according to salinity concentration through sunny hours.  相似文献   

7.
Renewable energy based multi-generation systems can help solving energy-related environmental problems. For this purpose, a novel solar tower-based multi-generation system is proposed for the green hydrogen production as the main product. A solar-driven open Brayton cycle with intercooling, regeneration and reheat is coupled with a regenerative Rankine cycle and a Kalina cycle-11 as a unique series of power cycles. Significant portion of the produced electricity is utilized to produce green hydrogen in an electrolyzer. A thermal energy storage, a single-effect absorption refrigeration cycle and two domestic hot water heaters are also integrated. Energy, exergy and economic analyses are performed to examine the performance of the proposed system, and a detailed parametric analysis is conducted. Multiobjective optimization is carried out to determine the optimum performance. Optimum energy and exergy efficiencies, unit exergy product cost and total cost rate are calculated as 39.81%, 34.44%, 0.0798 $/kWh and 182.16 $/h, respectively. Products are 22.48 kg/h hydrogen, 1478 kW power, 225.5 kW cooling and 7.63 kg/s domestic hot water. Electrolyzer power size is found as one of the most critical decision variables. Solar subsystem has the largest exergy destruction. Regenerative Rankine cycle operates at the highest energy and exergy efficiencies among power cycles.  相似文献   

8.
In this paper, a study is carried out to evaluate the annual thermal and exergy performance of a photovoltaic/thermal (PV/T) and earth air heat exchanger (EAHE) system, integrated with a greenhouse, located at IIT Delhi, India, for different climatic conditions of Srinagar, Mumbai, Jodhpur, New Delhi and Bangalore. A comparison is made of various energy metrics, such as energy payback time (EPBT), electricity production factor (EPF) and life cycle conversion efficiency (LCCE) of the system by considering four weather conditions (a–d type) for five climatic zones. The embodied energy and annual energy outputs have been used for evaluation of the energy metrics. The annual overall thermal energy, annual electrical energy savings and annual exergy was found to be best for the climatic condition of Jodhpur at 29,156.8 kWh, 1185 kWh and 1366.4 kWh, respectively when compared with other weather stations covered in the study, due to higher solar intensity I and sunshine hours, and is lowest for Srinagar station. The results also showed that energy payback time for Jodhpur station is lowest at 16.7 years and highest for Srinagar station at 21.6 years. Electricity production factor (EPF) is highest for Jodhpur, i.e. 2.04 and Life cycle conversion efficiency (LCCE) is highest for Srinagar station. It is also observed that LCCE increases with increase in life cycle.  相似文献   

9.
The process of charging of an encapsulated ice thermal energy storage device (ITES) is thermally modeled here through heat transfer and thermodynamic analyses. In heat transfer analysis, two different temperature profile cases, with negligible radial and/or stream-wise conduction are investigated for comparison, and the temperature profiles for each case are analyzed in an illustrative example. After obtaining temperature profiles through heat transfer analysis, a comprehensive thermodynamic study of the system is conducted. In this regard, energy, thermal exergy and flow exergy efficiencies, internal and external irreversibilities corresponding to flow exergy, as well as charging times are investigated. The energy efficiencies are found to be more than 99%, whereas the thermal exergy efficiencies are found to vary between 40% and 93% for viable charging times. The flow exergy efficiency varies between 48% and 88% for the flows and inlet temperatures selected. For a flow rate of 0.00164 m3/s, the maximum flow exergy efficiency occurs with an inlet temperature of 269.7 K, corresponding to an efficiency of 84.3%. For the case where the flow rate is 0.0033 m3/s, the maximum flow exergy efficiency becomes 87.9% at an inlet temperature of 270.7 K. The results confirm the fact that energy analyses, and even thermal exergy analyses, may lead to some unrealistic efficiency values. This could prove troublesome for designers wishing to optimize performance. For this reason, the flow exergy model provides the most useful information for those wishing to improve performance and reduce losses in such ITES systems.  相似文献   

10.
The study was conducted to determine the consequences of a carbon tax, equal to an estimated social cost of carbon of $37.2/Mg, on household electricity cost, and to determine if a carbon tax would be sufficient to incentivize households to install either a grid-tied solar or wind system. U.S. Department of Energy hourly residential profiles for five locations, 20 years of hourly weather data, prevailing electricity pricing rate schedules, and purchase prices and solar panel and wind turbine power output response functions, were used to address the objectives. Two commercially available household solar panels (4 kW, 12 kW), two wind turbines (6 kW, 12 kW), and two price rate structures (traditional meter, smart meter) were considered. Averaged across the five households, the carbon tax is expected to reduce annual consumption by 4.4% (552 kWh/year) for traditional meter households and by 4.9% (611 kWh/year) for households charged smart meter rates. The carbon tax increases electricity cost by 19% ($202/year). For a household cost of $202/year the carbon tax is expected to reduce social costs by $11. Annual carbon tax collections of $234/household are expected. Adding the carbon tax was found to be insufficient to incentivize households to install either a solar panel or wind turbine system. Installation of a 4 kW solar system would increase the annual cost by $1546 (247%) and decrease CO2 emissions by 38% (2526 kg) valued at $94/household. The consequence of a carbon tax would depend largely on how the proceeds of the tax are used.  相似文献   

11.
A conceptual design and performance of a dual-purpose solar continuous adsorption system for domestic refrigeration and water heating is described. Malaysian activated carbon and methanol are used as the adsorbent–adsorbate pair. The heat rejected by the adsorber beds and condensers during the cooling process of the refrigeration part is recovered and used to heat water for the purpose of domestic consumption. In a continuous 24-h cycle, 16.9 MJ/day of heat can be recovered for heating of water in the storage tanks. In the single-purpose intermittent solar adsorption system, this heat is wasted. The total energy input to the dual-purpose system during a 24-h operation is 61.2 MJ/day and the total energy output is 50 MJ/day. The latter is made up of 44.7 MJ/day for water heating and 5.3 MJ/day for ice making. The amount of ice that can be produced is 12 kg/day. Using typical value for the efficiency of evacuated tube collector of water heating system of 65%, the following coefficient of performances (COP's) are obtained: 44% for adsorption refrigeration cycle, 73% for dual-purpose solar water heater, 9.1% for dual-purpose solar adsorption refrigeration and 82.1% for dual-purpose of both solar water heater and refrigerator.  相似文献   

12.
The present study developed a maximum-power point tracking control (MPPT) technology for solar heating system to minimize the pumping power consumption at an optimal heat collection. The net solar energy gain Qnet (=Qs ? Wp/ηe) was experimentally found to be the cost function for MPPT with maximum point. The feedback tracking control system was developed to track the optimal Qnet (denoted Qmax). A tracking filter which was derived from the thermal analytical model of the solar heating system was used to determine the instantaneous tracking target Qmax(t). The system transfer-function model of solar heating system was also derived experimentally using a step response test and used in the design of tracking feedback control system. The PI controller was designed for a tracking target Qmax(t) with a quadratic time function. The MPPT control system was implemented using a microprocessor-based controller and the test results show good tracking performance with small tracking errors. It is seen that the average mass flow rate for the specific test periods in five different days is between 18.1 and 22.9 kg/min with average pumping power between 77 and 140 W, which is greatly reduced as compared to the standard flow rate at 31 kg/min and pumping power 450 W which is based on the flow rate 0.02 kg/s m2 defined in the ANSI/ASHRAE 93-1986 Standard and the total collector area 25.9 m2. The average net solar heat collected Qnet is between 8.62 and 14.1 kW depending on weather condition. The MPPT control of solar heating system has been verified to be able to minimize the pumping energy consumption with optimal solar heat collection.  相似文献   

13.
It would be misleading to consider only cost aspect of the design of a heat exchanger. High maintenance costs increase total cost during the services life of heat exchanger. Therefore exergy analysis and energy saving are very important parameters in the heat exchanger design. In this study, the effects of surface geometries of three different type heat exchangers called as PHEflat (Flat plate heat exchanger), PHEcorrugated (Corrugated plate heat exchanger) and PHEasteriks (Asterisk plate heat exchanger) on heat transfer, friction factor and exergy loss were investigated experimentally. The experiments were carried out for a heat exchanger with single pass under condition of parallel and counter flow. In this study, experiments were conducted for laminar flow conditions. Reynolds number and Prandtl number were in the range of 50 ? Re ? 1000 and 3 ? Pr ? 7, respectively. Heat transfer, friction factor and exergy loss correlations were obtained according to the experimental results.  相似文献   

14.
This paper presents a novel polygeneration system that integrates the acetylene process and the use of fuel cells. The system produces acetylene and power by a process of the partial oxidation/combustion (POC) of natural gas process, a water–gas shift reactor, a fuel cell and a waste heat boiler auxiliary system to recover the exhaust heat and gas from the fuel cell. Based on 584.3 kg/h of natural gas feedstock, a POC reactor temperature of 1773 K, an absorber pressure of 1.013 MPa and a degasser pressure of 0.103 MPa, the simulation results show that the new system achieved acetylene production of 1.9 MW, net electricity production of 1.7 MW, power generation efficiency of 26.8% and exergy efficiency of 43.4%, which was 20.2% higher than the traditional acetylene production process. The new system's exergy analysis and the flow rate of the products were investigated, and the results revealed that the energy conversion and systematic integration mechanism demonstrated the improvement of natural gas energy conversion efficiency.  相似文献   

15.
The present study deals with heat storage performance investigation of integrated solar pond and collector system. In the experimental work, a cylindrical solar pond system (CSPS) with a radius of 0.80 m and a depth of 2.0 m and four flat plate collectors dimensions of 1.90 m × 0.90 m was built in Cukurova University in Adana, Turkey. The CSPS was filled with salty water of various densities to form three salty water zones (Upper Convective Zone, Non-Convective Zone and Heat Storage Zone). Heat energy collected by collectors was transferred to the solar pond storage zone by using a heat exchanger system which is connected to the solar collectors. Several temperature sensors connected to a data acquisition system were placed vertically inside the CSPS and at the inlet and outlet of the heat exchanger. Experimental studies were performed using 1, 2, 3 and 4 collectors integrated with the CSPS under approximately the same condition. The integrated solar pond efficiencies were calculated experimentally and theoretically according to the number of collectors. As a result, the experimental efficiencies are found to be 21.30%, 23.60%, 24.28% and 26.52%; the theoretical efficiencies to be 23.42%, 25.48%, 26.55% and 27.70% for 1, 2, 3 and 4 collectors, respectively. Theoretical efficiencies were compared with the experimental results and hence a good agreement is found between experimental and theoretical efficiency profiles.  相似文献   

16.
In this research, poplar and pine timbers have been dried from the moisture contents of 1.28 kg water/kg dry matter and 0.60 kg water/kg dry matter to 0.15 kg water/kg dry matter in heat pump dryer functioning on the basis of 24 h operation. The change in weight in all of the timbers was followed in the drying chamber and drying stopped when the desired weight was achieved. At 40 °C dry bulb temperature, 0.8 m/s air velocity, and initial moisture content of the poplar timbers 1.28 kg water/kg dry matter, the moisture content was reduced to 0.15 kg water/kg dry matter moisture content in 70 h, and the moisture content of the pine timbers which was 0.60 kg water/kg dry matter was reduced to the same amount in 50 h. All data collected while drying were saved on computer and analysed afterwards. For this system, energy analysis was made to determine the energy utilization. Exergy analysis was accomplished to determine of exergy losses during the drying process.  相似文献   

17.
This article proposed a hybrid power system combining mid-temperature solar heat and a coal-fired power plant for CO2 capture. In this system, solar heat at around 300 °C replaces the high-quality steam extractions of the Rankine cycle to heat the feed water, so the steam that was to be extracted can expand efficiently in the high-pressure turbines. In this hybrid system, the CO2 capture penalty is completely compensated for by the enhanced work output contributed by the solar heat. The annual solar field cost is reduced to 10.8 $/ton-CO2, compared to 25.8 $/ton-CO2 in a system with solar heat for direct solvent regeneration. Additionally, the mid-temperature solar heat is converted into work with an improved efficiency of 27%. Thus, this system offers a promising approach to reduce the CO2 capture penalty in CCS with attractive cost-effective utilization of mid-temperature solar heat.  相似文献   

18.
This paper focuses on evaluation of the optimum cooling water temperature during condensation of saturated water vapor within a shell and tube condenser, through minimization of exergy destruction. First, the relevant exergy destruction is mathematically derived and expressed as a function of operating temperatures and mass flow rates of both vapor and coolant. The optimization problem is defined subject to condensation of the entire vapor mass flow and it is solved based on the sequential quadratic programming (SQP) method. The optimization results are obtained at two different condensation temperatures of 46 °C and 54 °C for an industrial condenser. As the upstream steam mass flow rates increase, the optimal inlet cooling water temperature and exergy efficiency decrease, whereas exergy destruction increases. However, the results are higher for optimum values at a condensation temperature of 54 °C, compared to those when the condensation temperature is 46 °C. For example, when the steam mass flow rate is 1 kg/s and the condensation temperature increases from 46 °C to 54 °C, the optimal upstream coolant temperature increases from 16.78 °C to 25.17 °C. Also, assuming an ambient temperature of 15 °C, the exergy destruction decreases from 172.5 kW to 164.6 kW. A linear dependence of exergy efficiency on dimensionless temperature is described in terms of the ratio of the temperature difference between the inlet cooling water and the environment, to the temperature difference between condensation and environment.  相似文献   

19.
Simultaneously generating both electricity and low grade heat, photovoltaic thermal (PVT) systems maximise the solar energy extracted per unit of collector area and have the added benefit of increasing the photovoltaic (PV) electrical output by reducing the PV operating temperature. A graphical representation of the temperature rise and rate of heat output as a function of the number of transfer units NTUs illustrates the influence of fundamental parameter values on the thermal performance of the PVT collector. With the aim of maximising the electrical and thermal energy outputs, a whole of system approach was used to design an experimental, unglazed, single pass, open loop PVT air system in Sydney. The PVT collector is oriented towards the north with a tilt angle of 34°, and used six 110 Wp frameless PV modules. A unique result was achieved whereby the additional electrical PV output was in excess of the fan energy requirement for air mass flow rates in the range of 0.03–0.05 kg/s m2. This was made possible through energy efficient hydraulic design using large ducts to minimise the pressure loss and selection of a fan that produces high air mass flow rates (0.02–0.1 kg/s m2) at a low input power (4–85 W). The experimental PVT air system demonstrated increasing thermal and electrical PV efficiencies with increasing air mass flow rate, with thermal efficiencies in the range of 28–55% and electrical PV efficiencies between 10.6% and 12.2% at midday.  相似文献   

20.
This paper is Part 2 of the study on the exergetic and thermoeconomic analysis of diesel engine powered cogeneration (DEPC) systems. In Part 1, formulations and procedure for such a comprehensive analysis are provided while this paper provides an application of the developed formulation that considers an actual DEPC plant installed in Gaziantep, Turkey. The plant has a total installed electricity and steam generation capacities of 25.3 MW and 8.1 tons/h at 170 °C, respectively. Exergy destructions, exergy efficiencies, exergetic cost allocations, and various exergoeconomic performance parameters are determined for the entire plant and its components. The exergy efficiency of the plant is determined to be 40.6%. The exergoeconomic analysis is based on specific cost method (SPECO) and it is determined that the specific unit exergetic cost of the power produced by the plant is 10.3 $/GJ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号