首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regular exercise is associated with pronounced health benefits. The molecular processes involved in physiological adaptations to exercise are best understood in skeletal muscle. Enhanced mitochondrial functions in muscle are central to exercise-induced adaptations. However, regular exercise also benefits the brain and is a major protective factor against neurodegenerative diseases, such as the most common age-related form of dementia, Alzheimer’s disease, or the most common neurodegenerative motor disorder, Parkinson’s disease. While there is evidence that exercise induces signalling from skeletal muscle to the brain, the mechanistic understanding of the crosstalk along the muscle–brain axis is incompletely understood. Mitochondria in both organs, however, seem to be central players. Here, we provide an overview on the central role of mitochondria in exercise-induced communication routes from muscle to the brain. These routes include circulating factors, such as myokines, the release of which often depends on mitochondria, and possibly direct mitochondrial transfer. On this basis, we examine the reported effects of different modes of exercise on mitochondrial features and highlight their expected benefits with regard to neurodegeneration prevention or mitigation. In addition, knowledge gaps in our current understanding related to the muscle–brain axis in neurodegenerative diseases are outlined.  相似文献   

2.
The protective effects of chronic moderate exercise-mediated autophagy include the prevention and treatment of several diseases and the extension of lifespan. In addition, physical exercise may impair cellular structures, requiring the action of the autophagy mechanism for clearance and renovation of damaged cellular components. For the first time, we investigated the adaptations on basal autophagy flux in vivo in mice’s liver, heart, and skeletal muscle tissues submitted to four different chronic exercise models: endurance, resistance, concurrent, and overtraining. Measuring the autophagy flux in vivo is crucial to access the functionality of the autophagy pathway since changes in this pathway can occur in more than five steps. Moreover, the responses of metabolic, performance, and functional parameters, as well as genes and proteins related to the autophagy pathway, were addressed. In summary, the regular exercise models exhibited normal/enhanced adaptations with reduced autophagy-related proteins in all tissues. On the other hand, the overtrained group presented higher expression of Sqstm1 and Bnip3 with negative morphological and physical performance adaptations for the liver and heart, respectively. The groups showed different adaptions in autophagy flux in skeletal muscle, suggesting the activation or inhibition of basal autophagy may not always be related to improvement or impairment of performance.  相似文献   

3.
The neuromuscular junction (NMJ) is a specialized synapse that bridges the motor neuron and the skeletal muscle fiber and is crucial for conversion of electrical impulses originating in the motor neuron to action potentials in the muscle fiber. The consideration of contributing factors to skeletal muscle injury, muscular dystrophy and sarcopenia cannot be restricted only to processes intrinsic to the muscle, as data show that these conditions incur denervation-like findings, such as fragmented NMJ morphology and corresponding functional changes in neuromuscular transmission. Primary defects in the NMJ also influence functional loss in motor neuron disease, congenital myasthenic syndromes and myasthenia gravis, resulting in skeletal muscle weakness and heightened fatigue. Such findings underscore the role that the NMJ plays in neuromuscular performance. Regardless of cause or effect, functional denervation is now an accepted consequence of sarcopenia and muscle disease. In this short review, we provide an overview of the pathologic etiology, symptoms, and therapeutic strategies related to the NMJ. In particular, we examine the role of the NMJ as a disease modifier and a potential therapeutic target in neuromuscular injury and disease.  相似文献   

4.
Dyslipidemia is commonly linked to skeletal muscle dysfunction, accumulation of intramyocellular lipids, and insulin resistance. However, our previous research indicated that dyslipidemia in apolipoprotein E and low-density lipoprotein receptor double knock-out mice (ApoE/LDLR -/-) leads to improvement of exercise capacity. This study aimed to investigate in detail skeletal muscle function and metabolism in these dyslipidemic mice. We found that ApoE/LDLR -/- mice showed an increased grip strength as well as increased troponins, and Mhc2 levels in skeletal muscle. It was accompanied by the increased skeletal muscle mitochondria numbers (judged by increased citrate synthase activity) and elevated total adenine nucleotides pool. We noted increased triglycerides contents in skeletal muscles and increased serum free fatty acids (FFA) levels in ApoE/LDLR -/- mice. Importantly, Ranolazine mediated inhibition of FFA oxidation in ApoE/LDLR -/- mice led to the reduction of exercise capacity and total adenine nucleotides pool. Thus, this study demonstrated that increased capacity for fatty acid oxidation, an adaptive response to dyslipidemia leads to improved cellular energetics that translates to increased skeletal muscle strength and contributes to increased exercise capacity in ApoE/LDLR -/- mice.  相似文献   

5.
Maintaining appropriate levels of physical exercise is an optimal way for keeping a good state of health. At the same time, optimal exercise performance necessitates an integrated organ system response. In this respect, physical exercise has numerous repercussions on metabolism and function of different organs and tissues by enhancing whole-body metabolic homeostasis in response to different exercise-related adaptations. Specifically, both prolonged and intensive physical exercise produce vast changes in multiple and different lipid-related metabolites. Lipidomic technologies allow these changes and adaptations to be clarified, by using a biological system approach they provide scientific understanding of the effect of physical exercise on lipid trajectories. Therefore, this systematic review aims to indicate and clarify the identifying biology of the individual response to different exercise workloads, as well as provide direction for future studies focused on the body’s metabolome exercise-related adaptations. It was performed using five databases (Medline (PubMed), Google Scholar, Embase, Web of Science, and Cochrane Library). Two author teams reviewed 105 abstracts for inclusion and at the end of the screening process 50 full texts were analyzed. Lastly, 14 research articles specifically focusing on metabolic responses to exercise in healthy subjects were included. The Oxford quality scoring system scale was used as a quality measure of the reviews. Information was extracted using the participants, intervention, comparison, outcomes (PICOS) format. Despite that fact that it is well-known that lipids are involved in different sport-related changes, it is unclear what types of lipids are involved. Therefore, we analyzed the characteristic lipid species in blood and skeletal muscle, as well as their alterations in response to chronic and acute exercise. Lipidomics analyses of the studies examined revealed medium- and long-chain fatty acids, fatty acid oxidation products, and phospholipids qualitative changes. The main cumulative evidence indicates that both chronic and acute bouts of exercise determine significant changes in lipidomic profiles, but they manifested in very different ways depending on the type of tissue examined. Therefore, this systematic review may offer the possibility to fully understand the individual lipidomics exercise-related response and could be especially important to improve athletic performance and human health.  相似文献   

6.
7.
(1) Background: One mechanism through which physical activity (PA) provides benefits is by triggering activity at a molecular level, where neurotrophins (NTs) are known to play an important role. However, the expression of the circulating levels of neurotrophic factors, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4/5), in response to exercise, is not fully understood. Therefore, the aim was to provide an updated overview on the neurotrophin (NT) variation levels of BDNF and NT-4/5 as a consequence of a long-term aerobic exercise intervention, and to understand and describe whether the upregulation of circulating NT levels is a result of neurotrophic factors produced and released from the brain, and/or from neurotrophic secreting peripheral organs. (2) Methods: The articles were collected from PubMed, SPORTDiscus, Web of Science, MEDLINE, and Embase. Data were analyzed through a narrative synthesis. (3) Results: 30 articles studied humans who performed training protocols that ranged from 4 to 48 weeks; 22 articles studied rodents with an intervention period that ranged from 4 to 64 weeks. (4) Conclusions: There is no unanimity between the upregulation of BDNF in humans; conversely, concerning both BDNF and NT-4/5 in animal models, the results are heterogeneous. Whilst BDNF upregulation appears to be in relative agreement, NT-4/5 seems to display contradictory and inconsistent conclusions.  相似文献   

8.
9.
This study aimed to clarify the therapeutic effects of exercise training on neural BDNF/TrkB signaling and apoptotic pathways in diabetic cerebral cortex. Thirty-six male C57BL/6JNarl mice were randomly divided into three groups: control (CON-G), diabetic group (DM-G, 100 mg/kg streptozotocin, i.p.), and diabetic with exercise training group (DMEX-G, Swim training for 30 min/day, 5 days/week). After 12 weeks, H&E staining, TUNEL staining, and Western blotting were performed to detect the morphological changes, neural apoptosis, and protein levels in the cerebral cortex. The Bcl2, BclxL, and pBad were significant decreased in DM-G compared with CON-G, whereas they (excluded the Ras and pRaf1) were increased in DMEX-G. In addition, interstitial space and TUNEL(+) apoptotic cells found increased in DM-G with increases in Fas/FasL-mediated (FasL, Fas, FADD, cleaved-caspase-8, and cleaved-caspase-3) and mitochondria-initiated (tBid, Bax/Bcl2, Bak/BclxL, Bad, Apaf1, cytochrome c, and cleaved-caspase-9) apoptotic pathways. However, diabetes-induced neural apoptosis was less in DMEX-G than DM-G with observed raises in the BDNF/TrkB signaling pathway as well as decreases in Fas/FasL-mediated and mitochondria-initiated pathways. In conclusion, exercise training provided neuroprotective effects via enhanced neural BDNF/TrkB signaling pathway and prevent Fas/FasL-mediated and mitochondria-initiated apoptotic pathways in diabetic cerebral cortex.  相似文献   

10.
This study investigates the effect of Dexamethasone (Dex) treatment on blood and skeletal muscle metabolites level and skeletal muscle activity of enzymes related to energy metabolism after long-duration swimming. To evaluate whether Dex treatment, swimming, and combining these factors act on analyzed data, rats were randomly divided into four groups: saline treatment non-exercise and exercise and Dex treatment non-exercised and exercised. Animals in both exercised groups underwent long-lasting swimming. The concentration of lipids metabolites, glucose, and lactate were measured in skeletal muscles and blood according to standard colorimetric and fluorimetric methods. Also, activities of enzymes related to aerobic and anaerobic metabolism were measured in skeletal muscles. The results indicated that Dex treatment induced body mass loss and increased lipid metabolites in the rats’ blood but did not alter these changes in skeletal muscles. Interestingly, prolonged swimming applied after 9 days of Dex treatment significantly intensified changes induced by Dex; however, there was no difference in skeletal muscle enzymatic activities. This study shows for the first time the cumulative effect of exercise and Dex on selected elements of lipid metabolism, which seems to be essential for the patient’s health due to the common use of glucocorticoids like Dex.  相似文献   

11.
AIM: Mild heat stress can improve mitochondrial respiratory capacity in skeletal muscle. However, long-term heat interventions are scarce, and the effects of heat therapy need to be understood in the context of the adaptations which follow the more complex combination of stimuli from exercise training. The purpose of this work was to compare the effects of 6 weeks of localized heat therapy on human skeletal muscle mitochondria to single-leg interval training. METHODS: Thirty-five subjects were assigned to receive sham therapy, short-wave diathermy heat therapy, or single-leg interval exercise training, localized to the quadriceps muscles of the right leg. All interventions took place 3 times per week. Muscle biopsies were performed at baseline, and after 3 and 6 weeks of intervention. Mitochondrial respiratory capacity was assessed on permeabilized muscle fibers via high-resolution respirometry. RESULTS: The primary finding of this work was that heat therapy and exercise training significantly improved mitochondrial respiratory capacity by 24.8 ± 6.2% and 27.9 ± 8.7%, respectively (p < 0.05). Fatty acid oxidation and citrate synthase activity were also increased following exercise training by 29.5 ± 6.8% and 19.0 ± 7.4%, respectively (p < 0.05). However, contrary to our hypothesis, heat therapy did not increase fatty acid oxidation or citrate synthase activity. CONCLUSION: Six weeks of muscle-localized heat therapy significantly improves mitochondrial respiratory capacity, comparable to exercise training. However, unlike exercise, heat does not improve fatty acid oxidation capacity.  相似文献   

12.
Cachexia is a multifactorial and multi-organ syndrome that is a major cause of morbidity and mortality in late-stage chronic diseases. The main clinical features of cancer-related cachexia are chronic inflammation, wasting of skeletal muscle and adipose tissue, insulin resistance, anorexia, and impaired myogenesis. A multimodal treatment has been suggested to approach the multifactorial genesis of cachexia. In this context, physical exercise has been found to have a general effect on maintaining homeostasis in a healthy life, involving multiple organs and their metabolism. The purpose of this review is to present the evidence for the relationship between inflammatory cytokines, skeletal muscle, and fat metabolism and the potential role of exercise training in breaking the vicious circle of this impaired tissue cross-talk. Due to the wide-ranging effects of exercise training, from the body to the behavior and cognition of the individual, it seems to be able to improve the quality of life in this syndrome. Therefore, studying the molecular effects of physical exercise could provide important information about the interactions between organs and the systemic mediators involved in the overall homeostasis of the body.  相似文献   

13.
Endurance exercise induces various adaptations that yield health benefits; however, the underlying molecular mechanism has not been fully elucidated. Given that it has recently been accepted that inflammatory responses are required for a specific muscle adaptation after exercise, this study investigated whether toll-like receptor (TLR) 4, a pattern recognition receptor that induces proinflammatory cytokines, is responsible for exercise-induced adaptations in mouse skeletal muscle. The TLR4 mutant (TLR4m) and intact TLR4 control mice were each divided into 2 groups (sedentary and voluntary wheel running) and were housed for six weeks. Next, we removed the plantaris muscle and evaluated the expression of cytokines and muscle regulators. Exercise increased cytokine expression in the controls, whereas a smaller increase was observed in the TLR4m mice. Mitochondrial markers and mitochondrial biogenesis inducers, including peroxisome proliferator-activated receptor beta and heat shock protein 72, were increased in the exercised controls, whereas this upregulation was attenuated in the TLR4m mice. In contrast, exercise increased the expression of molecules such as peroxisome proliferator-activated receptor-gamma coactivator 1-alpha and glucose transporter 4 in both the controls and TLR4m mice. Our findings indicate that exercise adaptations such as mitochondrial biogenesis are mediated via TLR4, and that TLR4-mediated inflammatory responses could be involved in the mechanism of adaptation.  相似文献   

14.
15.
Signal transduction at the neuromuscular junction (NMJ) is affected in many human diseases, including congenital myasthenic syndromes (CMS), myasthenia gravis, Lambert–Eaton myasthenic syndrome, Isaacs’ syndrome, Schwartz–Jampel syndrome, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. The NMJ is a prototypic cholinergic synapse between the motor neuron and the skeletal muscle. Synaptogenesis of the NMJ has been extensively studied, which has also been extrapolated to further understand synapse formation in the central nervous system. Studies of genetically engineered mice have disclosed crucial roles of secreted molecules in the development and maintenance of the NMJ. In this review, we focus on the secreted signaling molecules which regulate the clustering of acetylcholine receptors (AChRs) at the NMJ. We first discuss the signaling pathway comprised of neural agrin and its receptors, low-density lipoprotein receptor-related protein 4 (Lrp4) and muscle-specific receptor tyrosine kinase (MuSK). This pathway drives the clustering of acetylcholine receptors (AChRs) to ensure efficient signal transduction at the NMJ. We also discuss three secreted molecules (Rspo2, Fgf18, and connective tissue growth factor (Ctgf)) that we recently identified in the Wnt/β-catenin and fibroblast growth factors (FGF) signaling pathways. The three secreted molecules facilitate the clustering of AChRs by enhancing the agrin-Lrp4-MuSK signaling pathway.  相似文献   

16.
Dysregulation of brain iron metabolism is one of the pathological features of aging and Alzheimer’s disease (AD), a neurodegenerative disease characterized by progressive memory loss and cognitive impairment. While physical inactivity is one of the risk factors for AD and regular exercise improves cognitive function and reduces pathology associated with AD, the underlying mechanisms remain unclear. The purpose of the study is to explore the effect of regular physical exercise on modulation of iron homeostasis in the brain and periphery of the 5xFAD mouse model of AD. By using inductively coupled plasma mass spectrometry and a variety of biochemical techniques, we measured total iron content and level of proteins essential in iron homeostasis in the brain and skeletal muscles of sedentary and exercised mice. Long-term voluntary running induced redistribution of iron resulted in altered iron metabolism and trafficking in the brain and increased iron content in skeletal muscle. Exercise reduced levels of cortical hepcidin, a key regulator of iron homeostasis, coupled with interleukin-6 (IL-6) decrease in cortex and plasma. We propose that regular exercise induces a reduction of hepcidin in the brain, possibly via the IL-6/STAT3/JAK1 pathway. These findings indicate that regular exercise modulates iron homeostasis in both wild-type and AD mice.  相似文献   

17.
Mitochondria intricately modulate their energy production through the control of mitochondrial adaptation (mitochondrial biogenesis, fusion, and/or fission) to meet energy demands. Nutrient overload may result in dysregulated mitochondrial biogenesis, morphology toward mitochondrial fragmentation, and oxidative stress in the skeletal muscle. In addition, physical activity and diet components influence mitochondrial function. Exercise may stimulate mitochondrial biogenesis and promote mitochondrial fusion/fission in the skeletal muscle. Moreover, some dietary fatty acids, such as n‐3 polyunsaturated fatty acids and conjugated linoleic acid, have been identified to positively regulate mitochondrial adaptation in the skeletal muscle. This review discusses the association of mitochondrial impairments and obesity, and presents an overview of various mechanisms of which exercise training and mitochondrial nutrients promote mitochondrial function in the skeletal muscle.  相似文献   

18.
Mitochondrial function in skeletal muscle, which plays an essential role in oxidative capacity and physical activity, declines with aging. Acetic acid activates AMP-activated protein kinase (AMPK), which plays a key role in the regulation of whole-body energy by phosphorylating key metabolic enzymes in both biosynthetic and oxidative pathways and stimulates gene expression associated with slow-twitch fibers and mitochondria in skeletal muscle cells. In this study, we investigate whether long-term supplementation with acetic acid improves age-related changes in the skeletal muscle of aging rats in association with the activation of AMPK. Male Sprague Dawley (SD) rats were administered acetic acid orally from 37 to 56 weeks of age. Long-term supplementation with acetic acid decreased the expression of atrophy-related genes, such as atrogin-1, muscle RING-finger protein-1 (MuRF1), and transforming growth factor beta (TGF-β), activated AMPK, and affected the proliferation of mitochondria and type I fiber-related molecules in muscles. The findings suggest that acetic acid exhibits an anti-aging function in the skeletal muscles of aging rats.  相似文献   

19.
This study investigated the effects of l-glutamine (Gln) and/or l-leucine (Leu) administration on sepsis-induced skeletal muscle injuries. C57BL/6J mice were subjected to cecal ligation and puncture to induce polymicrobial sepsis and then given an intraperitoneal injection of Gln, Leu, or Gln plus Leu beginning at 1 h after the operation with re-injections every 24 h. All mice were sacrificed on either day 1 or day 4 after the operation. Blood and muscles were collected for analysis of inflammation and oxidative damage-related biomolecules. Results indicated that both Gln and Leu supplementation alleviated sepsis-induced skeletal muscle damage by reducing monocyte infiltration, calpain activity, and mRNA expression levels of inflammatory cytokines and hypoxia-inducible factor-1α. Furthermore, septic mice treated with Gln had higher percentages of blood anti-inflammatory monocytes and muscle M2 macrophages, whereas Leu treatment enhanced the muscle expressions of mitochondrion-related genes. However, there were no synergistic effects when Gln and Leu were simultaneously administered. These findings suggest that both Gln and Leu had prominent abilities to attenuate inflammation and degradation of skeletal muscles in the early and/or late phases of sepsis. Moreover, Gln promoted the switch of leukocytes toward an anti-inflammatory phenotype, while Leu treatment maintained muscle bioenergetic function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号