首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isothermal vapor⿿liquid equilibrium data for the binary system carbon dioxide + methyl iodide were measured at temperatures from 283.15 to 323.15 K at 10 K intervals. Data in the two-phase region were measured by using a circulation-type equilibrium apparatus and gas chromatography. This binary mixture system showed positive deviation from the Raoult's law and no azotrope observance. The experimental data were correlated with the Peng⿿Robinson equation of state (PR-EoS) using the Wong⿿Sandler (W⿿S) mixing rule, which was combined with the nonrandom two-liquid (NRTL) excess Gibbs free energy model and Peng⿿Robinson equation of state (PR-EoS) using the Universal mixing rule (UMR) as well as with the UNIQUAC model. The calculated results with this combination of equations show positive agreement with experimental data taken within this study.  相似文献   

2.
Supercritical fluid technology (SFT) as a new technique is very important for clean environment and removal of chemical pollutants. The lack of solubility data of solid solute in certain supercritical fluid is a great obstacle to the successful implementation of SFT. In this work, the solubility of bisphenol A in supercritical carbon dioxide was determined by the dynamic method at the temperatures ranging from 308 to 328 K and pressure range of 11.0–21.0 MPa. The effects of temperature and pressure on solubility were analyzed according to molecular motion theory. The solubility data were correlated using eight different semi-empirical models (Chrastil, Adachi–Lu, Kumar–Johnston, Tang, Sung–Shim, Bartle, Méndez Santiago–Teja and Yu). The comparison between different models was discussed. The thermodynamic properties (total enthalpy ΔH, enthalpy of sublimation ΔsubH and enthalpy of solvation ΔsolvH) of the solid solute were obtained.  相似文献   

3.
Solubility data of solutes in supercritical fluids (SCF) are crucial for designing extraction processes, such as extraction using SCF or micronization of drug powders. A new empirical equation is proposed to correlate solute solubility in supercritical carbon dioxide (SC CO2) with temperature, pressure and density of pure SC CO2. The proposed equation is ln y2 = J0 + J1P2 + J2T2 + J3 ln ρ where y2 is the mole fraction solubility of the solute in the supercritical phase, J0 − J3 are the model constants calculated by least squares method, P (bar) is the applied pressure, T is temperature (K) and ρ is the density of pure SC CO2. The accuracy of the proposed model and three other empirical equations employing P, T and ρ variables was evaluated using 16 published solubility data sets by calculating the average of absolute relative deviation (AARD). The mean AARD for the proposed model is 7.46 (±4.54) %, which is an acceptable error when compared with the experimental uncertainty. The AARD values for other equations were 11.70 (±23.10), 6.895 (± 3.81) and 6.39 (±6.41). The mean AARD of the new equation is significantly lower than that obtained from Chrastil et al. model and has the same accuracy as compared with Bartle et al. and Mèndez-Santiago–Teja model. The proposed model presents more accurate correlation for solubility data in SC CO2. It can be employed to speed up the process of SCF applications in industry.  相似文献   

4.
Solubility data of a mixture containing 94.2% ethanol and 5.8% octane was measured in carbon dioxide solvent using a high-pressure type phase equilibrium apparatus at pressures up to 103.5 bar and at temperature of 75 °C. The results showed that considerable separation was not achieved in this ethanol and octane ratio. However, the experimental data were then compared with the theoretical data which were obtained from two models which are regular solution theory and Redlich-Kwong equation of state. Regular solution theory is employed to each phase by applying activity coefficient expressions. Redlich-Kwong equation of state is employed to the vapor phase and then with applying fugacity coefficient, liquid phase data is obtained. The regular solution theory as a novel model approach has been found to be encouraging for the prediction of phase equilibria solubilities. It concluded that the regular solution theory model could predict two phases equilibrium data better than Redlich-Kwong equation of state.  相似文献   

5.
A genetic algorithm based least square support vector machine has been used to predict the solubility of 25 different solutes in supercritical carbon dioxide. This model consists of three inputs including temperature, pressure and density of supercritical carbon dioxide and a single output which is the solubility of different solutes in supercritical carbon dioxide. The model predictions were compared with the outputs of seven well-known semi empirical correlations. Results showed that the present method has an average relative deviation of about 4.92% for 25 solutes while the best semi empirical equation resulted an average relative deviation of about 13.60% for same solutes.  相似文献   

6.
A method to predict solubility of fat compounds (fatty acids, fatty acid esters, and triglycerides) in supercritical CO2 in the absence of experimental data is presented. The method is based on the idea of group contribution, so only knowledge about the chemical structure of the substance is needed to predict its solubility in CO2. Chrastil's equation was used to correlate the solubilities of fatty acids, fatty acid esters, and triglycerides in CO2. The three parameters determined from fitting of the data were calculated. A nonlinear fit routine was used to determine the chemical group contributions to the three parameters. Analysis of the results shows that it is possible to correlate the parameters of Chrastil's equation to molecular groups. The average deviation from the experimental data was 8%.  相似文献   

7.
A new empirical equation is proposed to correlate solute solubility in supercritical carbon dioxide (SCCO2). The new empirical model has four parameters per each solute that can be obtained by correlation of the experimental solubility data. The input variables of the equation are pressure, temperature and density of pure SCCO2. The new equation is applied for correlation of solubility of 24 compounds in SCCO2 at wide range of temperatures and pressures. The overall percent of absolute average relative deviation (%AARD) of the new equation for correlation of the experimental data is 6.54%. Comparison of the results of the present model with a three-parameter and a four-parameter empirical model demonstrates good accuracy of the new empirical model.  相似文献   

8.
Melting temperatures of organic solids are often depressed by high-pressure CO2 due to a dissolution of CO2 in the molten organic compounds. For thermodynamic analysis of the melting point depression, solubilities of CO2 in molten biphenyl and naphthalene were measured by near-infrared spectroscopy at various temperatures and pressures up to 20 MPa. Molarity of the organic component was determined from the 3νCH absorption band, and that of CO2 from the 2ν1 + ν3 band. Mole fraction of CO2 in the liquid phase was found to be an increasing function of the pressure up to 0.6 at 20 MPa and a weakly decreasing function of the temperature. The solubility data were used for modeling of the mixtures by the Peng–Robinson equation of state with a binary interaction parameter k12. Calculation of the solid–liquid–gas phase equilibrium for the model fluid qualitatively described a large decrease in the melting temperature with increasing pressure up to 10 MPa followed by a small change at higher pressures. The melting point change was interpreted by the two competing effects: hydrostatic pressure effect increases the melting point by ca. 8 °C at 20 MPa, whereas CO2 solubility effect reduces it by ca. 30 °C. Decomposition of the solubility effect into ideal and non-ideal mixing parts revealed that the non-ideality increases the melting point by more than 10 °C.  相似文献   

9.
Solubility of quinine in supercritical carbon dioxide(SCCO_2) was experimentally measured in the pressure range of 8 to 24 MPa, at three constant temperatures: 308.15 K, 318.15 K and 328.15 K. Measurement was carried out in a semi-dynamic system. Experimental data were correlated by iso-fugacity model(based on cubic equations of state, CEOS), Modified Mendez–Santiago–Teja(MST) and Modified Bartle semi-empirical models. Two cubic equations of state: Peng–Robinson(PR) and Dashtizadeh–Pazuki–Ghotbi–Taghikhani(DPTG) were adopted for calculation of equilibrium parameters in CEOS modeling. Interaction coefficients(k_(ij) l_(ij)) of van der Waals(vdW) mixing rules were considered as the correlation parameters in CEOS-based modeling and their contribution to the accuracy of model was investigated. Average Absolute Relative Deviation(AARD) between correlated and experimental data was calculated and compared as the index of validity and accuracy for different modeling systems. In this basis it was realized that the semi-empirical equations especially Modified MST can accurately support the theoretical studies on phase equilibrium behavior of quinine–SCCO_2 media. Among the cubic equations of state DPGT within two-parametric vd W mixing rules provided the best data fitting and PR within one-parametric vd W mixing rules demonstrated the highest deviation respecting to the experimental data. Overall, in each individual modeling system the best fitting was observed on the data points attained at 318 K, which could be perhaps due to the moderate thermodynamic state of supercritical phase.  相似文献   

10.
The use of supercritical carbon dioxide is emerging as a potential method for achieving pollution-free dyeing. An important factor in supercritical fluid dyeing is the solubility of the dye in supercritical carbon dioxide. Our measurements show that the solubility of C. I. Disperse Red-60 dye in supercritical carbon dioxide is significantly enhanced upon addition of polar csolvents : ethanol and acetone. The solubility enhancement is attributed to the formation of hydrogen bonds between cosolvent and dye molecules. Observed solubility behavior is correlated using dilute-solution theory with lattice-fluid-hydrogen-bonding model. Needed physical and hydrogen-bonding molecular parameters are estimated using the experimental data.  相似文献   

11.
This study was aimed to measure the solubility of carvedilol in the temperature and pressure ranges of 308⿿338 K and 160 bar to 400 bar, respectively. In this direction, a homemade high pressure visual equilibrium cell was used to measure the solubility of carvedilol using a static method coupled with gravimetric technique. The results revealed that the carvedilol solubility was ranged between 1.12 ÿ 10⿿5 and 5.01 ÿ 10⿿3 based on the mole fraction (mole of carvedilol/mole of carvedilol + mole of CO2) in this study as the temperature and pressure was changed. Finally, the results were correlated using four density-based semi-empirical correlations including Chrastil, Mendez⿿Santiago⿿Teja (MST), Bartle et al., and Kumar and Johnston (K-J) models. Results revealed that although the K-J model leads to the lowest average absolute relative deviation percent (AARD %) of 6.27%, but it could not be considered as the most accurate correlation since all the used four correlations introduces AARD % of about 6⿿10% which may be in the same range as the experimental error.  相似文献   

12.
The continuous countercurrent fractionation of fish oil ethyl esters using supercritical carbon dioxide is studied, modelling a process with internal reflux generated by a thermal gradient at the top stage. A methodology for process design is proposed and applied to determine the relationships between the temperature at the top stage (T1), the number of theoretical stages (N), and the solvent to feed ratio (S/F), with the aim of providing a quantitative comparison with the external reflux process. The internal reflux process is viable and, for stated process specifications (mass fraction and recovery of C20 + C22 ethyl esters of 95%), provides comparable or better results than the external reflux process. For example, operating at 13.3 MPa and 50 °C, and keeping T1 in the range (66–70) °C, the specifications are attained with N and S/F in the range 16–30 and 88–120, respectively.  相似文献   

13.
Using a continuous flow apparatus, the ternary solubility of mono- and di-tert-butyl ethers of glycerol (MTBG and DTBG, respectively) in supercritical carbon dioxide was measured at the temperatures of 313.15, 333.15, and 348.15 K; a pressure range of 80-200 bar; and an expanded gas flow rate of 180 ± 10 mL min−1 at average laboratory temperature of 300.15 K and pressure of 0.89 bar. The ternary solubility of the ethers at the constant temperatures of 333.15 and 348.15 K increased with increasing pressure up to the crossover point (i.e., 152 bar for MTBG and 170 bar for DTBG). MTBG exhibited a higher solubility than DTBG in scCO2. The experimental data for the ternary solubility of MTBG and DTBG were correlated using the Bartle equation.  相似文献   

14.
The aim of this work is to determine, depending on the operation conditions, which semiempirical equation provides the best fit to solubility data of pharmaceutical compounds in supercritical CO2. Solubility data from 27 different pharmaceutical solutes were collected from literature and the different density-based models (Chrastil, Adachi-Lu, del Valle-Aguilera, Sparks, Kumar-Johnston, Bartle, Méndez Santiago-Teja) together with the Yu's model and Gordillo's model were employed. The results showed that, in general, Sparks’ equation provides the best fit to the solubility data for this kind of solids in supercritical CO2. However, at certain specific conditions, the best correlation is obtained using Gordillo's equation. By means of a brief comparison with Peng-Robinson equation of state, semiempirical equations present a more accuracy prediction compared to cubic equations of state, and present no drawbacks such as properties estimation and computational difficulties.  相似文献   

15.
The solubilities of two different non-psychoactive cannabinoids i.e., cannabigerol (CBG) and cannabidiol (CBD), in supercritical carbon dioxide (CO2) have been determined at 315, 326 and 334 K and in the pressure range from 11.3 to 20.6 MPa. These solubility data have been compared to the previously determined solubilities of two psychoactive cannabinoids i.e., (−)-Δ9-tetrahydrocannabinol (Δ9-THC) and cannabinol (CBN), in supercritical CO2. An analytical method with a quasi-flow apparatus was used for the experimental determination. Within the investigated temperature and pressure range, the molar solubility of CBG ranged from 1.17 to 1.91 × 10−4 and the molar solubility of CBD ranged from 0.88 to 2.69 × 10−4. The solubility of the different cannabinoids in supercritical CO2 increases at 326 K in the following order: Δ9-THC < CBG < CBD < CBN. The solubility data were correlated using the Peng-Robinson equation of state in combination with Van der Waals mixing rules. Deviations between calculated results and the experimental data ranged from 0.81 to 6.35% absolute average relative deviation (AARD), except for CBD at 334 K, where the AARD was 18.4%.  相似文献   

16.
超临界二氧化碳和醇类体系的相平衡计算   总被引:12,自引:0,他引:12  
应用Peng-Robinson(P-R)状态方程对超临界CO2系统进行了相平衡模拟。对超临界CO2和醇类二元系统进行了汽液相平衡计算,结果表明,P-R状态方程模拟高压下CO2系统的相平衡具有较高的精度。  相似文献   

17.
Solubility data of organophosphorous metal extractants in supercritical fluids (SCF) are crucial for designing metal extraction processes. We have developed a new equation of state (EOS) based on virial equation including an untypical parameter as BP/RT, reduced temperature and pressure for prediction of solute solubility in supercritical carbon dioxide (SC CO2). Solubility experimental data (solubility of tributylphosphate in SC CO2) were correlated with the two cubic equations of state (EOS) models, namely the Peng–Robinson EOS (PR‐EOS) and the Soave–Redlich–Kwong EOS (SRK‐EOS), together with two adjustable parameter van der Waals mixing and combining rules and our proposed EOS. The AARD of our EOS is significantly lower than that obtained from the other EOS models. The proposed EOS presented more accurate correlation for solubility data in SC CO2. It can be employed to speed up the process of SCF applications in industry.  相似文献   

18.
To design a supercritical fluid extraction process for the separation of bioactive substances from natural products, a quantitative knowledge of phase equilibria between target biosolutes and solvent is necessary. How-ever, mostly no such information is available in literature to date. Thus in the present study, illustratively the solubility of bioactive coumarin and its various derivatives (i.e., hydroxy-, methyl-, and methoxy-derivatives) in supercritical CO2 were measured at 308.15–328.15 K and 10–30 MPa. Also, the pure physical properties such as normal boiling point, critical constants, acentric factor, molar volume and standard vapor pressure for coumarin and its derivatives were estimated. By these estimated information, the measured solubilities were quantitatively correlated by an approximate lattice equation of state proposed recently by the present authors.  相似文献   

19.
The solubility of C. I. Disperse Orange 30 (O30) dye in CO2 has been measured by using a closed-loop (batch) solid-fluid equilibrium apparatus at temperatures between 313 and 393 K and at pressures between 11 and 33 MPa. Kumar and Johnston’s equation based on Chrastil’s concept has been used to describe the experimental solubility data. The solubility versus density plot appears much simpler than the solubility versus pressure plot. The isotherms are nearly straight and parallel to each other, as seen in the previous studies. Peng-Robinson equation of state (PR EOS) has also been used successfully in modeling the dye solubility in supercritical carbon dioxide as a function of pressure or density of the fluid phase. The validity of this method has been verified by the vapor pressure calculation. This paper is dedicated to Professor Hyun-Ku Rhee on the occasion of his retirement from Seoul National University.  相似文献   

20.
Solubility data are reported for ethyl phenyl sulfide (EPS) and 2-chloroethyl ethyl sulfide (CEES) in CO2 at temperatures from 25 to 100 °C. These two sulfide-based compounds are homomorphs for chemical warfare agents (CWAs). Both sulfide–CO2 mixtures exhibit type-I phase behavior. The maximum in the 100 °C isotherm is approximately 2600 psia for the CEES–CO2 system and approximately 3400 psia for the EPS–CO2 system. The Peng–Robinson equation of state (PREOS) is used to model both sulfide–CO2 mixtures as well as the phase behavior of the 2-chloroethyl methyl sulfide (CEMS)–CO2 system previously reported in the literature. The Joback–Lydersen group contribution method is used to estimate the critical temperature, critical pressure, and acentric factor for the sulfides. Semi-quantitative estimates of the phase behavior are obtained for the CEES–CO2 and EPS–CO2 systems with a constant value of kij, the binary interaction parameter, fit to the 75 °C isotherms. However, very poor fits are obtained for the 2-chloroethyl methyl sulfide–CO2 system regardless of the value of kij. On the basis of the high solubility of EPS and CEES in CO2, supercritical fluid (SCF)-based technology could be used to recycle or recover chemical warfare materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号