首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the buoyancy-driven smoke flow layering length (both upstream and downstream) beneath the ceiling with combination of point extraction and longitudinal ventilation in tunnel fires. A theoretical model is developed based on previous back-laying model with only longitudinal ventilation, with modified actual heat release rate, as well as modified upstream and downstream opposing longitudinal air flow velocities by the induced flow velocity due to point extraction. Experiments are carried out in a reduced scale model tunnel with dimensionless of 72 m×1.5 m×1.3 m. A LPG porous gas burner is used as fire source. The smoke flow layering length both upstream and downstream are identified based on temperature profiles measured along the ceiling, for different experiment conditions. CFD simulations with FDS are also performed for the same scenarios. Results show that with combination of point extraction and longitudinal ventilation, the smoke flow layering length is not symmetric where it is longer downstream than that upstream. The upstream smoke layering length decreases, while the downstream layering length increases with increase in longitudinal ventilation velocity; and they both decrease with increase in point extraction velocity. The predictions by the proposed theoretical model agree well with the measurements and simulation results.  相似文献   

2.
A water system, consisting of several water mist nozzles, has been installed in a reduced-scale tunnel. Its effectiveness in blocking fire-induced smoke and heat is tested, with and without longitudinal ventilation. A total of 14 fire tests have been carried out, with 250 ml methanol in an iron tray (25 cm × 20 cm) as fuel. Temperatures have been measured by 30 thermocouples, located upstream and downstream of the fire location. The aim is to assess the effectiveness of the water system in preventing smoke spread and in reducing the temperature in the tunnel. Interaction of the water with the fire is avoided. The impact of water pressure, ventilation velocity and nozzle arrangement on the effectiveness in smoke blocking and temperature reduction is discussed. The result confirms that the water system effectively reduces the temperatures and prevents smoke spreading in the absence of longitudinal ventilation. However, strong longitudinal ventilation (0.8 m/s ventilation velocity in the reduced-scale tunnel, corresponding to critical velocity in full-scale (1:10) tunnel) reduces the effectiveness in blocking the smoke spreading by the water system, although the temperature reduction downstream the water system remains in place. Higher water pressure makes the cooling effect stronger, because more and smaller water droplets are injected into the tunnel. For a given level of water pressure level, the impact of the nozzle row configuration is small in the tests.  相似文献   

3.
The entire acoustic barrier is similar to a tunnel for the elevated Mass Rapid Transit (MRT) System. Current smoke ventilation designs for the elevated MRT system have no precedent standards to follow, and therefore are all designed based on experience. For the entire acoustic barrier design in the MRT system in Taiwan, this research used FDS to simulate fires under the compartments with different heat release rates and varying number of compartments in varying lengths of entire acoustic barriers. The effects of the smoke layers produced by the fires on the evacuation of the personnel were observed. This research used a 1000 m entire acoustic barrier without smoke vent for discussion, and it was discovered that evacuation proved to be ineffective when the heat release rates were 10, 20, 30 and 40 MW. However, under circumstances where openings of different sizes were used at the top of the barriers, or changes were made to the heat release rates, or alterations were made to the number of passengers and compartments, a formula was developed in which all passengers could be evacuated under these varying circumstances; and this formula can be used as reference during the designing of natural ventilation vents in acoustic barriers for elevated MRT systems.  相似文献   

4.
On the maximum smoke temperature under the ceiling in tunnel fires   总被引:8,自引:0,他引:8  
Maximum smoke temperature under the ceiling in a tunnel fire was studied experimentally and numerically. Full-scale burning tests in two vehicular tunnels of length 3.27 and 1.032 km with and without operating the longitudinal ventilation system were carried out. Smoke temperatures at selected positions under the ceiling were measured under different longitudinal ventilation velocities. Two different pool fires of 1.6 and 3 MW were set up. Computational Fluid Dynamics (CFD) simulations with Fire Dynamics Simulator (FDS) version 3.10 were carried out on those scenarios. CFD predicted smoke temperatures were firstly verified by comparing with the measured values at those selected positions, and then compared with the calculated values using the empirical equation due to Kurioka et al. Fairly good agreement was achieved, though the slope of the tunnel was not considered in this empirical equation.  相似文献   

5.
A set of experiments was carried out in a 1/9 reduced-scale single-track railway tunnel to investigate the effect of fuel area size on the temperature distribution and behavior of fires in a tunnel with natural ventilation. Methanol pool fires with four different fuel areas 0.6 × 0.3 m2 (1 pan), 1.2 × 0.3 m2 (2 pans), 2.4 × 0.3 m2 (4 pans) and 3.6 × 0.3 m2 (6 pans), were used in these experiments. Data were collected on temperatures, radiative heat flux and mass loss rates. The temperature distribution and smoke layer in the tunnel, along with overflow dimensions and radiant heat at the tunnel entrance were analyzed. The results show that as the fuel area enlarges, the fire gradually becomes ventilation-controlled and the ceiling temperature over the center of fire source declines. Burning at the central region of fire source is depressed due to lack of oxygen. This makes the temperature distribution along the tunnel ceiling change from a typical inverted V-shape to an M-shape. As observed in the experiments, a jet flame appeared at tunnel entrances and both the size and temperature of the flame increased with the enlargement of fuel area leading to a great threat to firefighters and evacuees in actual tunnel fires.  相似文献   

6.
Longitudinal ventilation systems are commonly installed in new tunnels in large cities of the Far East including Mainland China, Hong Kong and Taiwan. Many tunnels are found in big cities and some of them are inclined at an angle to the horizontal. However, smoke movement in tilted tunnels is not fully understood. In some of the tunnels, the ventilation system was designed based on presumed smoke movement pattern without experimental demonstration. Smoke movement pattern in a tilted tunnel model was studied by using a scaled model. A 1/50 tunnel model of length 2 m with adjustable angle to the horizontal was constructed by transparent acrylic plastics. A small 0.097 kW propanol pool fire was used as the heat source combined with burning pellets generating smoke. A fan placed at the upstream end was used to create longitudinal ventilation. Different ventilation rates were set using a transformer to control or adjust the fan speed. Experiments were performed with the tunnel angle varying up to 30° to the horizontal. Effect of smoke screens was also studied. The observed smoke movement patterns indicated that the shape of the buoyant plume inside the tunnel depends on the tilted angle. Smoke would flow along the tunnel floor due to gravity. The bending angle of the plume depends on the tunnel angle. Tunnel inclined at greater angles to the horizontal would give larger amount of smoke flow. Smoke movement pattern for a tilted tunnel with smoke screens was observed to be very different from some design projects. All results will be reported in this paper.  相似文献   

7.
Naturally ventilated urban vehicular tunnels with multiple roof openings have increased in China. Unnecessary gas (polluted air or fire smoke) are expected to be exhausted out through openings. Whether its safety standards can be satisfied or not still needs to be verified. In this paper, a safe CO concentration was firstly discussed, and a heat risk level of very high to extreme up to 46 °C was given. Secondly, a real 1410 m tunnel was proposed, and a 1/10 scale model tunnel was reproduced. Ambient winds of 0.95 m/s in prototype and 0.3 m/s in model were considered. Under normal traffic test, a track circuit was constructed with model vehicles moving on it to form traffic wind, and once the air velocity was larger than 0.31 m/s, the airflows were found to be not relevant to the Reynolds number. The traffic winds were weakened by openings. For three of all tested traffic, the actual air velocities were larger than the required ones, so its air qualities were satisfied. In firing test, two sets of burning experiments were conducted with which the heat release rates (HRR) were 8.35 kW and 13.7 kW. Large amounts of smoke were exhausted out of openings, and the high-temperature was not significant. Full-scale numerical simulations were carried out to verify the experimental results respectively using Fluent 6.0 for normal traffic and FDS 4.07 for firing. The simulations were compared well with the experiments. Further FDS simulations show that the openings’ mass flow rates are influenced little by ambient temperature; with the increasing length of the buried section, much smoke accumulate inside leading to a high temperature; having 4–5 openings in one shaft group is oversize in the actual engineering design.  相似文献   

8.
Three full-scale burning tests were conducted in a natural ventilation city road tunnel with shafts. Fire sources were placed to be at different locations but its peak release heats were all around 5 MW. Results showed that large amounts of smoke and heat were released through shafts. The maximum smoke temperatures under the ceiling were below than 100 °C, and being lower than 110 °C at the safe height farther 3 m away from fires. The maximum smoke spreading horizontal lengths were less than 240 m both in the upwind and downwind. During the late stages, many smoke particles descended from the ceiling and downdraught occurred at shafts due to low smoke temperatures, but the visibility was not very bad and people needn’t evacuate. All These results are valuable for fire protection and construction of natural ventilation road tunnel with shafts.  相似文献   

9.
The characteristics of a ceiling jet of an inclined tunnel in a fire will be studied and reported in this paper. Scale modeling experiments on a ceiling jet in a model tunnel of length 3.0 m, width 0.8 m and height 1.0 m inclined at different angles of 0°, 10°, 20° and 30° were carried out. Numerical studies by large eddy simulation were then performed. Both experimental observation and numerical simulation indicated that the characteristics of the temperature and velocity fields near the upper tunnel are different from those obtained using the empirical equations reported in the literature. Another set of empirical equations for gas temperature and flow velocity along the tunnel were fitted by experimental data. These derived empirical equations are useful for estimating the temperature and flow velocity patterns for the ceiling jet in an inclined tunnel with an angle within the range 0–30°.  相似文献   

10.
In this paper a computational study was carried out to evaluate the performance of longitudinal ventilation system equipped with an alternative jet fan with respect to traditional one in case of fire in tiled tunnel. The alternative jet fan is equipped with inclined silencers (pitch angle α = 6°) in order to reduce the Coanda effect and consequently shear stress on the tunnel ceiling. The fire was simulated setting heat flux on HGV surface. Computational fluid dynamic analysis was applied to simulate the ventilation in the unidirectional tunnel through κ–ɛ model. The comparison conducted in terms of total thrust required to prevent back-layering phenomena and numerical results were provided in terms of thrust of jet fan values, average velocity values and temperature profiles, for different tunnel slope values. Furthermore the authors have compared the critical velocity provided by CFD analysis with critical velocity provided in the literature.  相似文献   

11.
Fire detection experiments in a road traffic tunnel were performed in the Runehamar test tunnel 5th–8th March 2007. The Runehamar test tunnel is a full profile road traffic tunnel, 1.65 km long, located outside Åndalsnes, Norway. The goal was to examinate smoke and heat detection systems to determinate what kind of principle best suited for detecting a fire in an early stage. The systems were tested during small Heptane pool fires, varying between 0.16 m2 and 1 m2, giving heat release rates from 0.2 MW to 2.4 MW accordingly, and one car fire of about 3–5 MW, and with wind conditions varying from 1.1 m s?1 to 1.6 m s?1. The size of the fires, were designed to be in the range from impossible to difficult to detect. The results were conclusive. Earliest detection of a car fire, fire starts inside, was by smoke detection given fixed limits (3000 μg m?3). With open pool fires, or immediate flames, continues fibre optical heat detection systems was faster given the limits 3 °C/4 min.  相似文献   

12.
《Fire Safety Journal》2005,40(6):506-527
Large-scale fire tests were carried out with heavy goods vehicle (HGV) cargos in the Runehamar tunnel in Norway. The tunnel is a decommissioned, two-way-asphalted road tunnel that is 1600 m long, 6 m high and 9 m wide, with a slope varying between 0.5% uphill and 1% downhill. In total four tests were performed with fire in an HGV set-up and a longitudinal ventilation flow of approximately 3 m/s. In three tests, mixtures of different cellulose and plastic materials were used; in the fourth test a commodity consisting of furniture and fixtures was used. In all tests the mass ratio was approximately 82% cellulose and 18% plastic. A polyester tarpaulin covered the cargo.One purpose of the large-scale tests was to obtain new relevant gas temperature-time data from large-scale HGV fires in tunnels. There is presently a lack of such information for road tunnels. The maximum heat release rates produced by the four different fire loads varied between 66 and 202 MW resulting in maximum gas temperatures at the ceiling ranging between 1281 and 1365 °C. A comparison with literature values shows that the gas temperatures obtained here are uniformly higher than those obtained in other similar large-scale test series conducted using solid materials. A mathematical correlation of a temperature–time curve is given and this is the best representation of the measured temperature and a combination of frequently used temperature curves for tunnels (the HC curve and the RWS curve).  相似文献   

13.
The safety of a running train on fire in a tunnel is a key issue for rescue operations, and the train velocity is mainly related to its safety. In this study, the relationship between the wind velocity and heat release rate (HRR), temperature field around the train, and flame/smoke pervasion rule were investigated under the conditions of variable train velocity, fire location, and fire source location. Beijing Metro was considered as a typical example, in which the safe velocity was estimated to be ∼41.83 km h−1. Assuming the occurrence of fire at the center of the train, the numerical simulations of the flow field using the sliding grid of CFD were performed for a full-scale tunnel under different HRRs. When the fire source reached to the target section, the velocities of all the monitoring points rapidly increased. The velocities increased as the train tail arrived at the target section. The velocities at the measuring points increased with the increase in height, excluding the value of the position with a distance of 0.025 m from the tunnel ceiling. The average temperature and concentration of smoke in the annular space between the train and tunnel ceiling had the minimum values when the running train on fire moved with a speed of 45 km h−1. Thus, the safe velocity of a subway train on fire should be managed between 41.83 km h−1 and 45 km h−1.  相似文献   

14.
A series of fire tests was conducted in a 10.0 m (L) × 0.75 m (W) × 0.45 m (H) model tunnel with a rectangular cross section, and detailed measurements were taken of the temperature and velocity within a quasi-steady state fire-driven ceiling-jet running along the centre of a ceiling.The ceiling-jet thickness was defined as the distance from the tunnel ceiling to the point where the temperature and/or velocity dropped to half of their maximums. Correlations to represent the variation in the ceiling-jet thickness along the tunnel axis were developed with the aid of a theoretical approach. The coefficients included in these correlations were determined based on the experimental results obtained. It was found that the ceiling-jet thickness derived from the temperature was 1.17 times greater than that from the velocity in the tranquil flow region.In the tranquil region, both the velocity and temperature showed top-hat distributions, with a bulging shape from the apex of the distribution towards the tunnel floor. A cubic function and coordinate transformation were applied to develop empirical formulae for the temperature and velocity distributions, which were represented by the dimensionless distance from the tunnel ceiling and dimensionless temperature rise and/or velocity at a given distance from the fire source. The correlation developed for the temperature distribution was compared with the results of large- and full-scale tunnel experiments, which verified its applicability.  相似文献   

15.
Due to the small width and the large train blockage ratio in subway tunnel, the smoke back-layering will be different from that in the wider road tunnel with small vehicle blockage ratio. In the train blockage region of tunnel, the velocity of longitudinal ventilated air-flow interacting with the back-flowed smoke gas is different from that in the upstream tunnel without train blockage. Then the back-flowed smoke gas might be prevented in the train blockage region with higher ventilation velocity, otherwise it would be stopped in the upstream tunnel without train blockage but with lower ventilation velocity. They were taken into consideration separately and an equivalent fire source was introduced by dividing the dimensionless heat release rate of fire source into two parts in the cases where the smoke back-layering length is longer than metro train length. A series of full-scale numerical simulations are carried out with FDS to investigate the smoke back-layering length in subway tunnel with different train lengths and longitudinal ventilation velocities. The simulation results indicate that the influence of metro train length on the smoke back-layering is great and cannot be ignored any more. A global correlation model is proposed based on the dimensionless analysis and simulation results.  相似文献   

16.
This paper presents a case study of constructing a large-section long pedestrian underpass using pipe jacking method in Nanjing, China. The underpass, having a width of 7 m and a height of 4.3 m, was jacked 94.5 m in muddy silty clay under a busy roadway with 6.2 m overburden soil, meanwhile it traverses above the existed shield metro tunnels with just 4.5 m from the underpass bottom to tunnel vault. This paper introduced the design and construction schemes of this project in detail. A pre-construction three dimensional numerical simulation was conducted to investigate the responses of the roadway and metro tunnels to pipe jacking construction. Based on the simulation results, the field monitoring program was proposed, and the tunnels deformation and ground settlement were constantly monitored. The field performances of the metro tunnels and roadway were analyzed according to the monitoring data. In the jacking process, the micro-underbreak method was adopted. In order to decrease the tunnels uplift and ground settlement, the actual volume of soil conveyed out from soil chamber to ground surface was kept 95–98% of theoretical soil volume cut by cutter head. In general, this project is completed successfully without taking any additional time and money-consuming deformation control measures. The ground traffic and underneath metro runs well during the whole construction process.  相似文献   

17.
In this study, a series of sensitivity analyses were conducted to evaluate a computational fluid dynamic (CFD) model, Fire Dynamics Simulator (FDS) version 4.0, for tunnel fire simulations. A tunnel fire test with a fire size on the order of a 100 MW with forced, time-varying longitudinal ventilation was chosen from the Memorial Tunnel Ventilation Test Program (MTVTP) after considering recent tunnel fire accidents and the use of CFD models in practice. A careful study of grid size and parameters used in the Large Eddy Simulation (LES) turbulence model—turbulent Prandtl number, turbulent Schmidt number, and Smagorinsky constant—was conducted. More detailed analyses were performed to refine the smoke layer prediction of FDS, especially on backflow (i.e., a reversed smoke flow near the ceiling). Also, energy conservation was checked for this scenario in FDS. A simple guideline is given for smoke layer simulations using FDS for similar tunnel fire scenarios.  相似文献   

18.
The present article highlights the performance of natural roof ventilation systems and its effects on tunnel fire flow characteristics. Numerical analysis is performed using Large Eddy Simulations (LES) to predict fire growth rate and smoke movement in tunnel with single and multiple roof openings. The smoke venting performance of ceiling vents are investigated by varying the vent size and fire source locations. The critical parameters such as mass flow rate through ceiling openings, smoke traveling time and fire growth patterns are presented. The ceiling openings are effective in transferring hot gases and reduces the longitudinal smoke velocity. The heat source and ceiling vent locations significantly affects the vent performance and smoke behavior in tunnel. The present results are in good agreement with the experimental results available in literature.  相似文献   

19.
This paper presents an experimental investigation on the transverse ceiling flame length and the temperature distribution of a sidewall confined tunnel fire. The experiments were conducted in a 1/6th scale model tunnel with the fire source placed against the sidewall, 0 m, 0.17 m and 0.35 m above the floor, respectively. Experiments of fire against a wall without a ceiling, 0.35 m above the floor in a large space, were also conducted as a control group. Results shows that for small heat release rate (HRR), the flame is lower than the ceiling and extends along the sidewall. With the increase of HRR and elevation of burner height, the flame gradually impinges on the ceiling and spreads out radially along it. The flame impingement condition and the flame shapes of the wall fire with and without ceiling are presented. From the viewpoint of the physical meaning of flame impinging on the ceiling, the horizontal flame length should be a function of the unburned part of the fuel at the impinging point. Based on the proportional relation between the flame volume and HRR, the effective HRR (Qef) at the ceiling is determined and the effective dimensionless HRR, Q*ef is defined to correlate the horizontal ceiling flame length. Additionally, predictive correlations of transverse ceiling temperature distribution are proposed for the continuous flame region, the intermittent flame region and the buoyant plume region under the ceiling, respectively.  相似文献   

20.
Ventilation is an effective method for controlling smoke during a fire. The “critical ventilation velocity” ucr is defined as the minimum velocity at which smoke is prevented from spreading under longitudinal ventilation flow in tunnel fire situations. All previous studies on this topic have simulated fire scenarios in which only one fire source exists. This study conducted small-scale experiments and numerical simulations to investigate ucr for cases in which two tunnel fires occur simultaneously. The tunnel was 4 m long, 0.6 m wide and 0.6 m tall. Three cases of two variously separated fires were experimentally explored and six cases were examined numerically. Both the experimental and simulation results indicated that for two identical fires, ucr declines with separation. When the two fire sources are separate completely, ucr can be determined by considering only a single fire. When the larger fire is upstream of the smaller downstream fire, ucr also decreases with the separation. When two such fires sources are completely separate, ucr can be evaluated by considering only the larger fire. The concurrent ventilation flow and flow of downstream smoke from the larger fire are strong enough to suppress the smoke flow from the smaller fire. However, when the smaller fire is upstream of the larger fire, the decrease in ucr becomes insignificant as distance increases and the flow at ucr must overcome the flow from both fires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号