首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Abstract

Nanofluids have been recently gaining ever-increasing attention in solar thermoelectric applications due to their promising potentials as heat transfer fluids. This research investigates numerically the performance of a thermoelectric generator (TEG) that is cooled by Al2O3/water nanofluid flows in zigzag microchannel heat sinks (ZMCHS). The one-way fluid–structure interaction (FSI) tool was used to couple the thermal-electric and fluid flow tools in ANSYS 15.0. The present study focused on the effects of heat flux (2–50?kW/m2), laminar Reynolds number (5–1500), inlet flow temperature (293–303?K) and the nanoparticle concentration (1–6%) on the output electric power and the efficiency of the TEG module. The applied heat flux limitations and its relation to the thermal limitations of thermoelectric materials were considered. The results indicated that the increase of heat flux increased the output power and the efficiency of TEG. Higher Reynolds numbers (Re > 400), inlet temperature and nanofluid concentration had an insignificant impact on the TEG performance.  相似文献   

2.
The paper studied the performances of parallel thermoelectric generator (TEG) by theoretical analysis and experimental test. An analytical model of parallel TEG was developed by theoretical analysis and calculation, based on thermodynamics theory, semiconductor thermoelectric theory and law of conservation of energy. Approximate expressions of output power and current of parallel TEG were deduced by the analytical model. An experimental system was built to verify the model. The results indicate that only when all of the thermoelectric modules (TE modules) in the parallel TEG have the same inherent parameters and working conditions, the parallel properties of the TEG are the same as that of common DC power. The existence of contact resistance is just like the increase of the TE module’s internal resistance, which leads to the deceases of output power. The thermal contact resistance reduces the output power by reducing the temperature difference between the two sides of the thermocouples. The results derived from the model are basically consistent with the experimental results, the model is suitable for the performance researching and designing of parallel TEG.  相似文献   

3.
This paper presents the numerical modeling and optimization of a spectrum splitting photovoltaic–thermoelectric (PV–TE) hybrid system. In this work, a simulation model is established in consideration of solar concentration levels and several heat dissipation rates. Exemplarily, the performance of a hybrid system composed of a GaAs solar cell and a skutterudites CoSb3 solar thermoelectric generator (TEG) is simulated. Analysis under different conditions has been carried out to evaluate the electrical and thermal performance of the hybrid system. Results show that the cutoff-wavelength of the GaAs–CoSb3 hybrid system is mainly determined by the band gap of solar cell, when the solar concentration ratio is ranged between 550 to 770 and heat transfer coefficient h = 3000–4500 W/m2 K, the hybrid system has good electrical performance and low operating temperatures. Based on the analysis of the GaAs–CoSb3 hybrid system, guidelines for the PV–TE system design are proposed. It is also compared with a PV-only system working under the same cooling condition; results show that the PV–TE hybrid system is more suitable for working under high concentrations.  相似文献   

4.
Enhancement in heat transfer of the cold side is vital to amplify the performance of a thermoelectric generator (TEG). With enriched thermophysical properties of nanofluids, significant improvement in heat transfer process can be obtained. The current study concerns the performance comparison of an automobile waste heat recovery system with EG‐water (EG‐W) mixture, ZnO, and SiO2 nanofluid as coolants for the TEG system. The effects on performance parameters, that is, circuit voltage, conversion efficiency, and output power with exhaust inlet temperature, the total area of TEG, Reynolds number, and particle concentration of nanofluids for the TEG system have been investigated. A detailed performance analysis revealed an increase in voltage, power output, and conversion efficiency of the TEG system with SiO 2 nanofluid, followed by ZnO and EG‐W coolants. The electric power and conversion efficiency for SiO 2 nanofluid at an exhaust inlet temperature of 500K were enhanced by 11.80% and 11.39% respectively, in comparison with EG‐W coolants. Moreover, the model speculates that an optimal total area of TEGs exists for the maximum power output of the system. With SiO 2 nanofluid as a coolant, the total area of TEGs can be diminished by up to 34% as compared with EG‐W, which brings significant convenience for the placement of TEGs and reduces the cost of the TEG system.  相似文献   

5.
Solar hybrid systems with thermoelectric generators   总被引:1,自引:0,他引:1  
The possibility of using of thermoelectric generators in solar hybrid systems has been investigated. Four systems were examined, one working without radiation concentration, of the traditional PV/Thermal geometry, but with TEGs between the solar cells and heat extractor, and three other using concentrators, namely: concentrator – TEG ? heat extractor, concentrator ? PV cell ? TEG ? heat extractor, and PV cell – concentrator – TEG – heat extractor. The TEGs based on traditional semiconductor material Bi2Te3 and designed for temperature interval of 50–200 °C were studied experimentally. It was found that the TEG’s efficiency has almost linear dependence on the temperature difference ΔT between its plates, reaching 4% at ΔT = 155 °C (hot plate at 200 °C) with 3 W of power generated over the matched load. The temperature dependencies of current and voltage are also linear; accordingly, the power generated has quadratic temperature dependence. The experimental parameters, as well as parameters of two advanced TEGs taken from the literature, were used for estimation of performance of the hybrid systems. The conclusions are drawn in relation to the efficiency at different modes of operation and the cost of hybrid systems, as well as some recommendations in relation to optimal solar cells for applications in these systems.  相似文献   

6.
Dan Dai  Yixin Zhou  Jing Liu 《Renewable Energy》2011,36(12):3530-3536
A new type of thermoelectric generator (TEG) system based on liquid metal which serves to harvest and transport waste heat, is proposed in this paper. To demonstrate the feasibility of the new TEG system, an experimental prototype which combined commercially available thermoelectric (TE) modules with the electromagnetic pump was set up. Output voltage from TE modules and temperature changes of the main parts (waste heat source, liquid metal heating plate, water-cooling plates I and II) of the liquid metal based TEG system were experimentally measured, as well as the flow rate of cooling water and the load resistance. It was shown that the maximum open-circuit voltage of 34.7 V was obtained when the temperature of the waste heat source was 195.9 °C and the temperature gap between liquid metal heating plate and cooling-water plates was nearly 100 °C. These experimental results obviously verify that using liquid metal based TEG system for waste heat recovery is highly feasible. In addition, the TEG system performance is discussed and a calculated efficiency of 2% in the whole TEG system is obtained. Possible suggestions to further improve this type of generator in the future are given.  相似文献   

7.
There is a significant push to increase the output power of thermoelectric generators (TEGs) in order to make them more competitive energy harvesters. The thermal coupling of TEGs has a major impact on the effective temperature gradient across the generator and therefore the power output achieved. The application of micro fluidic heat transfer systems (μHTS) can significantly reduce the thermal contact resistance and thus enhance the TEG's performance. This paper reports on the characterization and optimization of a μTEG integrated with a two layer μHTS. The main advantage of the presented system is the combination of very low heat transfer resistances with small pumping powers in a compact volume. The influence of the most relevant system parameters, i.e. microchannel width, applied flow rate and the μTEG thickness on the system's net output performance are investigated. The dimensions of the μHTS/μTEG system can be optimized for specific temperature application ranges, and the maximum net power can be tracked by adjusting the heat transfer resistance during operation. A system net output power of 126 mW/cm2 was achieved with a module ZT of 0.1 at a fluid flow rate of 0.07 l/min and an applied temperature difference of 95K.It was concluded that for systems with good thermal coupling, the thermoelectric material optimization should focus more on the power factor than on the figure of merit ZT itself, since the influence of the thermal resistance of the TE material is negligible.  相似文献   

8.
In general, modeling of photovoltaic-thermoelectric (PV/TEG) hybrid panels have been mostly simplified and disconnected from the actual ambient conditions and thermal losses from the panel. In this study, a thermally coupled model of PV/TEG panel is established to precisely predict performance of the hybrid system under different weather conditions. The model takes into account solar irradiation, wind speed and ambient temperature as well as convective and radiated heat losses from the front and rear surfaces of the panel. The model is developed for three sample cities in Europe with different weather conditions. The results show that radiated heat loss from the front surface and the convective heat loss due to the wind speed are the most critical parameters on performance of the hybrid panel performance. The results also indicate that, with existing thermoelectric materials, the power generation by the TEG is insignificant compared to electrical output by the PV panel, and the TEG plays only a small role on power generation in the hybrid PV/TEG panel. However, contribution of the TEG in the power generation can be improved via higher ZT thermoelectric materials and geometry optimization of the TEG.  相似文献   

9.
ABSTRACT

The electric power produced by a thermoelectric generator (TEG) is strongly influenced by the applied heat sink. While a TEG is aimed at harvesting waste heat, the optimization of the efficiency of the heat sink is a key task for the design of waste heat recovery systems implementing TEG. A TEG model is proposed and implemented in an open source toolbox for field operation and manipulation (OpenFOAM) for the purpose of performing optimizations of the heat sink, using a commercially available TEG as basis. This model includes the multi-physics thermoelectric coupled effects. Conservation principles of energy and current are considered simultaneously. This includes the thermal and electric conduction, Seebeck effect, Peltier effect, Thomson effect, and Joule heating. Particular attention is given to a proper modeling of the boundary conditions. The thermoelectric model is implemented in such a way that it can readily be combined with other physical models in OpenFOAM. The model is validated by comparing the predictions to analytical results, measurements as well as the simulation data of other authors.  相似文献   

10.
Thermoelectric devices are considered a promising technique for recycling waste heat. In the present work, a three-dimensional numerical model is developed to study the output performance of thermoelectric devices. A comprehensive analysis is performed based on a conventional π-type thermoelectric couple. The results indicate that the maximum power of thermoelectric devices generally increases with a decrease in height and an increase in cross-sectional area; the maximum efficiency exhibits the opposite trends. The best way to reduce heat losses is by using ceramic plates with higher thermal conductivity. Moreover, the parasitic internal resistance exists in the thermoelements, and its influencing factors are studied. To minimize electric losses, an asymmetric structure is proposed for thermoelectric devices. The results exhibit that the optimal cross-sectional area ratio of the p-type and n-type legs (Sp/Sn) is mainly contingent upon the thermoelectric material parameters; the greater the differences in the parameters of p-type and n-type thermoelectric materials, the greater the gains provided by the asymmetric structure. Furthermore, the experimental data present great consistency with the numerical results. The research results may help guide the design of thermoelectric devices with relatively lower power losses.  相似文献   

11.
Efficiency of energy conversion processes can be improved if waste heat is converted to electricity. A thermoelectric generator (TEG) can directly convert waste heat to electricity. The TEG typically suffers from low efficiency due to various reasons, such as ohmic heating, surface-to-surrounding convection losses, and unfavorable material properties. In this work, the effect of surface-to-surrounding convection heat transfer losses on the performance of TEG is studied analytically and numerically. A one-dimensional (1-D) analytical model is developed that includes surface convection, conduction, ohmic heating, and Peltier, Seebeck, and Thomson effects with top and bottom surfaces of TEG exposed to convective boundary conditions. Using the analytical solutions, different performance parameters (e.g., heat input, power output, and efficiency) are calculated and expressed graphically as functions of thermal source and sink temperatures and convection heat transfer coefficient. Finally, a two-dimensional (2-D) mathematical model is solved numerically to observe qualitative results of thermal and electric fields inside the TEG. For all calculations, temperature-dependent thermal/electric properties are considered. Increase in thermal source temperature results in an increase in the power output with adiabatic side wall conditions. A change in boundary condition to convection heat transfer from adiabatic boundary has a large impact on thermal efficiency.  相似文献   

12.
Thermoelectric generator (TEG) is a promising thermoelectric (TE) conversion technology to effectively recover and convert waste heat from vehicle exhaust into useful energy, ie, electricity. Exhaust TEG (ETEG) is a system that is incorporated into the exhaust manifold of a vehicle. Exhaust TEG comprises of a heat exchanger, TEG modules, heat sink, and power conditioning unit. The present work reviews different vehicular ETEGs based on engine type, engine‐rated power, type and number of TEG module, efficiency of ETEG and TEG, exhaust and coolant temperature, and power output of ETEG . In addition to these, the technical issues faced in these ETEGs are addressed under 2 categories, viz., primary (TEG with low ZT TE material and inefficient heat exchanger and heat sink) and secondary issues (low operating temperature TEG modules and installation position of ETEG). In addition to it, effects of vibration and thermal cycling of exhaust system on TEG modules that may arise in ETEG are also discussed. A review of preventive solutions to the issues is also presented. Finally, the economic aspects of an ETEG are also discussed. The review highlights the need of commercialization of TE materials with ZT > 2, high‐temperature operating range, and segmented TEG modules in large volumes so that their practice can be extended in vehicular applications. Heat exchanger modeling using computational fluid dynamics and interfacing with heat transfer theory is essential to maintain temperature uniformity across the TEG modules. Installation of ETEG in the exhaust pipe should be such that it does not affect the performance of the engine. It is also realized that sturdy TEG modules should be developed for long‐term operation to prevent degradation due to mechanical vibration and thermal cycling of the vehicle. Further, ETEG is economically beneficial in vehicles such as trucks owing to availability of high thermal energy in their exhaust stream.  相似文献   

13.
Heat gain reduction by means of thermoelectric roof solar collector   总被引:1,自引:0,他引:1  
This paper presents a numerical investigation on attic heat gain reduction by using thermoelectric modules integrated in a conventional roof solar collector (RSC). This system, called thermoelectric roof solar collector (TE-RSC), is composed of a transparent glass, air gap, a copper plate, thermoelectric modules (TE) and rectangular fin heat sink. Due to the incident solar radiation, a temperature difference is created between the hot and cold sides of TE modules that generates a direct current. This current is used to drive a ventilating fan for cooling the TE-RSC and enhancing attic ventilation that reduces ceiling heat gain. The system performance was simulated using TRNSYS program with new TE and DC fan components developed by our team and compared to a common house.Simulation results using real house configuration showed that a TE-RSC unit of 0.0525 m2 surface area can generate about 9 W under 972 W/m2 global solar radiation and 35 °C ambient temperature. The induced air change varied between 20 and 40 and the corresponding ceiling heat transfer rate reduction is about 3–5 W/m2. The annual electrical energy saving was about 362 kWh. Finally, economical calculations indicated that the payback period of the TE-RSC is 4.36 years and the internal rate of return is 22.05%.  相似文献   

14.
A numerical study of the combustion of lean methane/air mixtures in a porous media burner is performed using novelty geometry, cylindrical annular space. The combustion process takes place in the porous space located between two pipes, which are filled with alumina beads of 5.6 mm diameter forming a porosity of 0.4. The outer tube diameter of 3.82 cm is isolated; meanwhile the inner tube of 2 cm in diameter is covered by a continuous set of thermoelectric elements (TE) for transforming heat energy into electricity. To achieve and maintain the proper temperature gradient on TE, convective heat losses are considered from the TE. Computer simulations focus on the two-dimensional (2D) temperature analysis and displacement dynamics of the combustion front inside the reactor, depending on the values of the filtration velocity (0.1 to 1.0 m/s), the heat loss coefficient from the internal cylinder (400–1500 W/m2/K), and the fuel equivalence ratio (0.06– 0.5). The conditions that maximized the overall performance of the process of energy conversion are: 0.7 m/s of the filtration velocity, 0.363 of the fuel equivalence ratio and 1500 W/(mK) of the heat transfer coefficient from the internal cylinder, to obtain 2.05 V electrical potential, 21 W of electrical power, and 5.64% of the overall process efficiency. The study shows that the cylindrical annular geometry can be used for converting the energy of combustion from lean gas mixtures into electricity, with a performance similar to the specified by manufacturers of thermoelectric elements (TE).  相似文献   

15.
Microheat pipe cooled reactor power source (HRP) designed for space or underwater vehicles meets the future demands, such as safer structure, longer operating time, and fewer mechanical moving parts. In this paper, potassium heat pipe cooled reactor power source system which generates 50 kWe electricity is proposed. The reactor core using uranium nitride fuel is cooled by 37 potassium high‐temperature heat pipes. The shields are designed as tungsten and water, and reactor reactivity is controlled by control drums. The thermoelectric generator (TEG) consists of thermoelectric conversion units and seawater cooler. The thermoelectric conversion units convert thermal energy to electric energy through the high‐performance thermoelectric material. A code applied for designing and analyzing the reactor power system is developed. It consists of multichannel reactor core model, heat pipe model using thermal resistance network, thermoelectric conversion, and thermal conductivity model. Then, the sensitivity analysis is performed on two key parameters including the length of the heat pipe condensation section and the cold junction temperature of the TE cell. Meanwhile, the steady‐state calculations are conducted. Results show that the maximum fuel temperature is 938 K located in the center of reactor core and the outlet temperature of coolant reaches 316 K. Both of them are within the limitation. It is concluded that the preliminary design of HPR design is reasonable and reliable. The designed residual heat removal system has sufficient safety margin to release the decay heat of the reactor. This research provides valuable analysis for the application of micronuclear power source.  相似文献   

16.
Thermoelectric power generators (TEGs) have received considerable attention in the vehicular waste heat recovery. Large temperature difference between hot-side end and cold-side end of TE modules should be maintained to keep large power generation. However, the scaling-up problem of inevitably temperature drop of exhaust gas along the flow direction of vehicles is introduced when multiple TE modules are assembled. In this work, a three-dimensional fluid–thermal–electric multiphysics model with equivalent properties of TE modules is established. The influencing mechanism of longitudinal vortex generator (LVG) pair number and distribution in the hot-side heat exchanger on the local power generation performance of the TEGs is examined. It is found that the extent of the local power generation enhancement gets smaller or even deteriorates at the downstream TE modules by uniformly increasing the LVG pair number along the flow direction. Hence, to make the heat flux efficiently utilized, a nonuniform segmented enhancement method is used for the hot-side heat exchanger. The results show that compared with the TEG with a uniform heat exchanger or a downstream-denser heat exchanger, the total Seebeck voltage generated by the TEG with an upstream-denser heat exchanger is 28% higher, and its output power is 64.4% higher at the matched load resistance. The TEG with the upstream-denser heat exchanger significantly improves the overall power generation performance without additional pumping power.  相似文献   

17.
A. Rezania  L.A. Rosendahl 《Energy》2012,37(1):220-227
Thermoelectric generators (TEG) convert heat energy to electrical power by means of semiconductor charge carriers serving as working fluid. In this work, a TEG is applied to a parallel microchannel heat sink. The effect of the inlet plenum arrangement on the laminar flow distribution in the channels is considered at a wide range of the pressure drop along the heat sink. The particular focus of this study is geometrical effect of the TEG on the heat transfer characteristics in the micro-heat sink. The hydraulic diameter of the microchannels is 270 μm, and three heat fluxes are applied on the hot surface of the TEG. By considering the maximum temperature limitation for Bi2Te3 material and using the microchannel heat sink for cooling down the TEG system, an optimum pumping power is achieved. The results are in a good agreement with the previous experimental and theoretical studies.  相似文献   

18.
A hybrid solar hot water and Bi2Te3-based thermoelectric generator (TEG) unit using a heat pipe evacuated tube collector with mini-compound parabolic concentrator (mini-CPC) is proposed. In this unit, the heat from the heat pipe evacuated tube solar collector is transferred to the hot side of TEG. Simultaneously, water cooling is used at the cold side to maintain the temperature difference. Electricity is generated by TEG and the remaining heat is transferred to water at the same time. This paper investigates how to convert excess solar heat into electricity more effectively. A mathematical model regarding this unit is developed and validated. It is found that the mini-CPC can significantly improve the electrical efficiency. The optimal thermal conductance of TEG is determined, which could make the best use of excess solar heat. The excess solar heat can be effectively converted into electricity when ZT of Bi2Te3 can be improved from 100 °C to 200 °C. Using TEG with ZT = 1.0 and a geometrical concentrating ratio at 0.92, electrical and thermal efficiencies of this system are predicted to be 3.3% and 48.6% when solar radiation and water temperature are 800 Wm−2 and 20 °C, respectively.  相似文献   

19.
An experiment has been performed to investigate the cooling performance of a thermoelectric ceiling cooling panel (TE‐CCP). The TE‐CCP was composed of 36 TE modules. The cold side of the TE modules was fixed to an aluminum ceiling panel to cool a test chamber of 4.5 m3 volume, while a copper heat exchanger with circulating cooling water at the hot side of the TE modules was used for heat release. Tests were conducted using various system parameters. It was found that the cooling performance of the system depended on the electrical supply, cooling water temperature and flow rate through the heat exchanger. A suitable condition occurred at 1.5 A of current flow with a corresponding cooling capacity of 289.4 W which gives the coefficient of performance (COP) of 0.75 with an average indoor temperature of 27°C. Using thermal comfort test data in literature for small air movements under radiant cooling ceilings, results from the experiments show that thermal comfort could be obtained with the TE‐CCP system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
A thermoelectric generator (TEG) module is designed to harvest low grade waste heat from a 2 kW fuel cell vehicle and improve its energy utilization. The module integrates a TEG cell with a heat pipe and a finned heat sink. A numerical model is developed based on an experiment setup where the fuel cell temperature is 45–60 °C while the cruise speed is 25 kmh?1. The numerical model is validated with less than 5% deviation. Extended cases are simulated for series and parallel power train configuration under changes to the waste heat temperature and vehicle speeds to evaluate the power and heat recovery ratio. A single TEG cell output between 2 and 3 W is achievable even at low grade heat. The parallel drive generates 50% more power than the series drive at 100 kmh?1 speed. A 2% heat recovery is theoretically achievable for a 16 cell module assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号