首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurodegenerative diseases represent a set of pathologies characterized by an irreversible and progressive, and a loss of neuronal cells in specific areas of the brain. Oxidative phosphorylation is a source of energy production by which many cells, such as the neuronal cells, meet their energy needs. Dysregulations of oxidative phosphorylation induce oxidative stress, which plays a key role in the onset of neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). To date, for most neurodegenerative diseases, there are no resolute treatments, but only interventions capable of alleviating the symptoms or slowing the course of the disease. Therefore, effective neuroprotection strategies are needed. In recent years, natural products, such as curcuminoids, have been intensively explored and studied for their therapeutic potentials in several neurodegenerative diseases. Curcuminoids are, nutraceutical compouns, that owen several therapeutic properties such as anti-oxidant, anti-inflammatory and neuroprotective effects. In this context, the aim of this review was to provide an overview of preclinical and clinical evidence aimed to illustrate the antioxidant effects of curcuminoids in neurodegenerative diseases. Promising results from preclinical studies encourage the use of curcuminoids for neurodegeneration prevention and treatment.  相似文献   

2.
Advances achieved with molecular biology and genomics technologies have permitted investigators to discover epigenetic mechanisms, such as DNA methylation and histone posttranslational modifications, which are critical for gene expression in almost all tissues and in brain health and disease. These advances have influenced much interest in understanding the dysregulation of epigenetic mechanisms in neurodegenerative disorders. Although these disorders diverge in their fundamental causes and pathophysiology, several involve the dysregulation of histone methylation-mediated gene expression. Interestingly, epigenetic remodeling via histone methylation in specific brain regions has been suggested to play a critical function in the neurobiology of psychiatric disorders, including that related to neurodegenerative diseases. Prominently, epigenetic dysregulation currently brings considerable interest as an essential player in neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Amyotrophic lateral sclerosis (ALS) and drugs of abuse, including alcohol abuse disorder, where it may facilitate connections between genetic and environmental risk factors or directly influence disease-specific pathological factors. We have discussed the current state of histone methylation, therapeutic strategies, and future perspectives for these disorders. While not somatically heritable, the enzymes responsible for histone methylation regulation, such as histone methyltransferases and demethylases in neurons, are dynamic and reversible. They have become promising potential therapeutic targets to treat or prevent several neurodegenerative disorders. These findings, along with clinical data, may provide links between molecular-level changes and behavioral differences and provide novel avenues through which the epigenome may be targeted early on in people at risk for neurodegenerative disorders.  相似文献   

3.
Recent research demonstrated pathological spreading of the disease-causing proteins from one focal point across other brain regions for some neurodegenerative diseases, such as Parkinson’s and Alzheimer’s disease. Spreading mediated by extracellular vesicles is one of the proposed disease-spreading mechanisms. Extracellular vesicles are cell membrane-derived vesicles, used by cells for cell-to-cell communication and excretion of toxic components. Importantly, extracellular vesicles carrying pathological molecules, when internalized by “healthy” cells, may trigger pathological pathways and, consequently, promote disease spreading to neighboring cells. Polyglutamine diseases are a group of genetic neurodegenerative disorders characterized by the accumulation of mutant misfolded proteins carrying an expanded tract of glutamines, including Huntington’s and Machado–Joseph disease. The pathological spread of the misfolded proteins or the corresponding mutant mRNA has been explored. The understanding of the disease-spreading mechanism that plays a key role in the pathology progression of these diseases can result in the development of effective therapeutic approaches to stop disease progression, arresting the spread of the toxic components and disease aggravation. Therefore, the present review’s main focus is the disease-spreading mechanisms with emphasis on polyglutamine diseases and the putative role played by extracellular vesicles in this process.  相似文献   

4.
Reticulons (RTNs) are crucial regulatory factors in the central nervous system (CNS) as well as immune system and play pleiotropic functions. In CNS, RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. Moreover, RTNs, particularly RTN4 and RTN3, are involved in neurodegeneration and neuroinflammation processes. The crucial role of RTNs in the development of several neurodegenerative diseases, including Alzheimer’s disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or other neurological conditions such as brain injury or spinal cord injury, has attracted scientific interest. Reticulons, particularly RTN-4A (Nogo-A), could provide both an understanding of early pathogenesis of neurodegenerative disorders and be potential therapeutic targets which may offer effective treatment or inhibit disease progression. This review focuses on the molecular mechanisms and functions of RTNs and their potential usefulness in clinical practice as a diagnostic tool or therapeutic strategy.  相似文献   

5.
Neurodegenerative disorders are primarily characterized by neuron loss. The most common neurodegenerative disorders include Alzheimer’s and Parkinson’s disease. Although there are several medicines currently approved for managing neurodegenerative disorders, a large majority of them only help with associated symptoms. This lack of pathogenesis-targeting therapies is primarily due to the restrictive effects of the blood–brain barrier (BBB), which keeps close to 99% of all “foreign substances” out of the brain. Since their discovery, nanoparticles have been successfully used for targeted delivery into many organs, including the brain. This review briefly describes the pathophysiology of Alzheimer’s, Parkinson’s disease, and amyotrophic lateral sclerosis, and their current management approaches. We then highlight the major challenges of brain-drug delivery, followed by the role of nanotherapeutics for the diagnosis and treatment of various neurological disorders.  相似文献   

6.
In recent years, small fishes such as zebrafish and medaka have been widely recognized as model animals. They have high homology in genetics and tissue structure with humans and unique features that mammalian model animals do not have, such as transparency of embryos and larvae, a small body size and ease of experiments, including genetic manipulation. Zebrafish and medaka have been used extensively in the field of neurology, especially to unveil the mechanisms of neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, and recently, these fishes have also been utilized to understand neurodevelopmental disorders such as autism spectrum disorder. The turquoise killifish has emerged as a new and unique model animal, especially for ageing research due to its unique life cycle, and this fish also seems to be useful for age-related neurological diseases. These small fishes are excellent animal models for the analysis of human neurological disorders and are expected to play increasing roles in this field. Here, we introduce various applications of these model fishes to improve our understanding of human neurological disorders.  相似文献   

7.
Brain small vessel disease (SVD) refers to a variety of structural and functional changes affecting small arteries and micro vessels, and manifesting as white matter changes, microbleeds and lacunar infarcts. Growing evidence indicates that SVD might play a significant role in the neurobiology of central nervous system (CNS) neurodegenerative disorders, namely Alzheimer’s disease (AD) and Parkinson’s disease (PD), and neuroinflammatory diseases, such as multiple sclerosis (MS). These disorders share different pathophysiological pathways and molecular mechanisms (i.e., protein misfolding, derangement of cellular clearance systems, mitochondrial impairment and immune system activation) having neurodegeneration as biological outcome. In these diseases, the actual contribution of SVD to the clinical picture, and its impact on response to pharmacological treatments, is not known yet. Due to the high frequency of SVD in adult-aged patients, it is important to address this issue. In this review, we report preclinical and clinical data on the impact of SVD in AD, PD and MS, with the main aim of clarifying the predictability of SVD on clinical manifestations and treatment response.  相似文献   

8.
Neurotrophic factors (NTFs) are essential for cell growth, survival, synaptic plasticity, and maintenance of specific neuronal population in the central nervous system. Multiple studies have demonstrated that alterations in the levels and activities of NTFs are related to the pathology and symptoms of neurodegenerative disorders, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Huntington’s disease. Hence, the key molecule that can regulate the expression of NTFs is an important target for gene therapy coupling adeno-associated virus vector (AAV) gene. We have previously reported that the Ras homolog protein enriched in brain (Rheb)–mammalian target of rapamycin complex 1 (mTORC1) axis plays a vital role in preventing neuronal death in the brain of AD and PD patients. AAV transduction using a constitutively active form of Rheb exerts a neuroprotective effect through the upregulation of NTFs, thereby promoting the neurotrophic interaction between astrocytes and neurons in AD conditions. These findings suggest the role of Rheb as an important regulator of the regulatory system of NTFs to treat neurodegenerative diseases. In this review, we present an overview of the role of Rheb in neurodegenerative diseases and summarize the therapeutic potential of AAV serotype 1 (AAV1)-Rheb(S16H) transduction in the treatment of neurodegenerative disorders, focusing on diseases, such as AD and PD.  相似文献   

9.
Neurological/neurovascular disorders constitute the leading cause of disability and the second leading cause of death globally. Major neurological/neurovascular disorders or diseases include cerebral stroke, Alzheimer’s disease, spinal cord injury, neonatal hypoxic-ischemic encephalopathy, and others. Their pathophysiology is considered highly complex and is the main obstacle in developing any drugs for these diseases. In this review, we have described the endothelin system, its involvement in neurovascular disorders, the importance of endothelin B receptors (ETBRs) as a novel potential drug target, and its agonism by IRL-1620 (INN—sovateltide), which we are developing as a drug candidate for treating the above-mentioned neurological disorders/diseases. In addition, we have highlighted the results of our preclinical and clinical studies related to these diseases. The phase I safety and tolerability study of sovateltide has shown it as a safe and tolerable compound at therapeutic dosages. Furthermore, preclinical and clinical phase II studies have demonstrated the efficacy of sovateltide in treating acute ischemic stroke. It is under development as a first-in-class drug. In addition, efficacy studies in Alzheimer’s disease (AD), acute spinal cord injury, and neonatal hypoxic-ischemic encephalopathy (HIE) are ongoing. Successful completion of these studies will validate that ETBRs signaling can be an important target in developing drugs to treat neurological/neurovascular diseases.  相似文献   

10.
Sex is a significant variable in the prevalence and incidence of neurological disorders. Sex differences exist in neurodegenerative disorders (NDs), where sex dimorphisms play important roles in the development and progression of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. In the last few years, some sex specific biomarkers for the identification of NDs have been described and recent studies have suggested that microRNA (miRNA) could be included among these, as influenced by the hormonal and genetic background. Failing to consider the possible differences between males and females in miRNA evaluation could introduce a sex bias in studies by not considering some of these sex-related biomarkers. In this review, we recapitulate what is known about the sex-specific differences in peripheral miRNA levels in neurodegenerative diseases. Several studies have reported sex-linked disparities, and from the literature analysis miR-206 particularly has been shown to have a sex-specific involvement. Hopefully, in the near future, patient stratification will provide important additional clues in diagnosis, prognosis, and tailoring of the best therapeutic approaches for each patient. Sex-specific biomarkers, such as miRNAs, could represent a useful tool for characterizing subgroups of patients.  相似文献   

11.
Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are essential for neuronal survival and growth. The signaling cascades initiated by BDNF and its receptor are the key regulators of synaptic plasticity, which plays important role in learning and memory formation. Changes in BDNF levels and signaling pathways have been identified in several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, and have been linked with the symptoms and course of these diseases. This review summarizes the current understanding of the role of BDNF in several neurodegenerative diseases, as well as the underlying molecular mechanism. The therapeutic potential of BDNF treatment is also discussed, in the hope of discovering new avenues for the treatment of neurodegenerative diseases.  相似文献   

12.
Neurodegenerative disorders are a highly prevalent class of diseases, whose pathological mechanisms start before the appearance of any clear symptoms. This fact has prompted scientists to search for biomarkers that could aid early treatment. These currently incurable pathologies share the presence of aberrant aggregates called amyloids in the nervous system, which are composed of specific proteins. In this review, we discuss how these proteins, their conformations and modifications could be exploited as biomarkers for diagnostic purposes. We focus on proteins that are associated with the most prevalent neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases, amyotrophic lateral sclerosis, and frontotemporal dementia. We also describe current challenges in detection, the most recent techniques with diagnostic potentials and possible future developments in diagnosis.  相似文献   

13.
Adiponectin is an adipokine produced by adipose tissue. It has numerous beneficial effects. In particular, it improves metabolic effects and glucose homeostasis, lipid profile, and is involved in the regulation of cytokine profile and immune cell production, having anti-inflammatory and immune-regulatory effects. Adiponectin’s role is already known in immune diseases and also in neurodegenerative diseases. Neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease, are a set of diseases of the central nervous system, characterized by a chronic and selective process of neuron cell death, which occurs mainly in relation to oxidative stress and neuroinflammation. Lifestyle is able to influence the development of these diseases. In particular, unhealthy nutrition on gut microbiota, influences its composition and predisposition to develop many diseases such as neurodegenerative diseases, given the importance of the “gut-brain” axis. There is a strong interplay between Adiponectin, gut microbiota, and brain-gut axis. For these reasons, a healthy diet composed of healthy nutrients such as probiotics, prebiotics, polyphenols, can prevent many metabolic and inflammatory diseases such as neurodegenerative diseases and obesity. The special Adiponectin role should be taken into account also, in order to be able to use this component as a therapeutic molecule.  相似文献   

14.
Oxidative stress has been linked with a variety of diseases, being involved in the debut and/or progress of several neurodegenerative disorders. This review intends to summarize some of the findings that correlate the overproduction of reactive oxygen species with the pathophysiology of Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. Oxidative stress was also noted to modify the inflammatory response. Even though oxidative stress and neuroinflammation are two totally different pathological events, they are linked and affect one another. Nonetheless, there are still several mechanisms that need to be understood regarding the onset and the progress of neurodegenerative diseases in order to develop efficient therapies. As antioxidants are a means to alter oxidative stress and slow down the symptoms of these neurodegenerative diseases, the most common antioxidants, enzymatic as well as non-enzymatic, have been mentioned in this paper as therapeutic options for the discussed disorders.  相似文献   

15.
16.
The human body is highly complex and comprises a variety of living cells and extracellular material, which forms tissues, organs, and organ systems. Human cells tend to turn over readily to maintain homeostasis in tissues. However, postmitotic nerve cells exceptionally have an ability to regenerate and be sustained for the entire life of an individual, to safeguard the physiological functioning of the central nervous system. For efficient functioning of the CNS, neuronal death is essential, but extreme loss of neurons diminishes the functioning of the nervous system and leads to the onset of neurodegenerative diseases. Neurodegenerative diseases range from acute to chronic severe life-altering conditions like Parkinson’s disease and Alzheimer’s disease. Millions of individuals worldwide are suffering from neurodegenerative disorders with little or negligible treatment available, thereby leading to a decline in their quality of life. Neuropathological studies have identified a series of factors that explain the etiology of neuronal degradation and its progression in neurodegenerative disease. The onset of neurological diseases depends on a combination of factors that causes a disruption of neurons, such as environmental, biological, physiological, and genetic factors. The current review highlights some of the major pathological factors responsible for neuronal degradation, such as oxidative stress, cell death, and neuroinflammation. All these factors have been described in detail to enhance the understanding of their mechanisms and target them for disease management.  相似文献   

17.
Stem cells, a special subset of cells derived from embryo or adult tissues, are known to present the characteristics of self-renewal, multiple lineages of differentiation, high plastic capability, and long-term maintenance. Recent reports have further suggested that neural stem cells (NSCs) derived from the adult hippocampal and subventricular regions possess the utilizing potential to develop the transplantation strategies and to screen the candidate agents for neurogenesis, neuroprotection, and neuroplasticity in neurodegenerative diseases. In this article, we review the roles of NSCs and other stem cells in neuroprotective and neurorestorative therapies for neurological and psychiatric diseases. We show the evidences that NSCs play the key roles involved in the pathogenesis of several neurodegenerative disorders, including depression, stroke and Parkinson’s disease. Moreover, the potential and possible utilities of induced pluripotent stem cells (iPS), reprogramming from adult fibroblasts with ectopic expression of four embryonic genes, are also reviewed and further discussed. An understanding of the biophysiology of stem cells could help us elucidate the pathogenicity and develop new treatments for neurodegenerative disorders. In contrast to cell transplantation therapies, the application of stem cells can further provide a platform for drug discovery and small molecular testing, including Chinese herbal medicines. In addition, the high-throughput stem cell-based systems can be used to elucidate the mechanisms of neuroprotective candidates in translation medical research for neurodegenerative diseases.  相似文献   

18.
19.
Alzheimer’s disease (AD) is a progressive and neurodegenerative disorder that induces dementia in older people. It was first reported in 1907 by Alois Alzheimer, who characterized the disease as causing memory loss and cognitive impairment. Pathologic characteristics of AD are β-amyloid plaques, neurofibrillary tangles and neurodegeneration. Current therapies only target the relief of symptoms using various drugs, and do not cure the disease. Recently, stem cell therapy has been shown to be a potential approach to various diseases, including neurodegenerative disorders, and in this review, we focus on stem cell therapies for AD.  相似文献   

20.
The transplantation of mesenchymal stem cells (MSCs) for treating neurodegenerative disorders has received growing attention recently because these cells are readily available, easily expanded in culture, and when transplanted, survive for relatively long periods of time. Given that such transplants have been shown to be safe in a variety of applications, in addition to recent findings that MSCs have useful immunomodulatory and chemotactic properties, the use of these cells as vehicles for delivering or producing beneficial proteins for therapeutic purposes has been the focus of several labs. In our lab, the use of genetic modified MSCs to release neurotrophic factors for the treatment of neurodegenerative diseases is of particular interest. Specifically, glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain derived neurotrophic factor (BDNF) have been recognized as therapeutic trophic factors for Parkinson’s, Alzheimer’s and Huntington’s diseases, respectively. The aim of this literature review is to provide insights into: (1) the inherent properties of MSCs as a platform for neurotrophic factor delivery; (2) the molecular tools available for genetic manipulation of MSCs; (3) the rationale for utilizing various neurotrophic factors for particular neurodegenerative diseases; and (4) the clinical challenges of utilizing genetically modified MSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号