首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The micronization of an anticancer compound (5-Fluorouracil) by supercritical gas antisolvent (GAS) process was investigated. 5-Fluorouracil was dissolved in dimethyl sulfoxide (DMSO) and subsequently carbon dioxide as an antisolvent was injected into this solution thus, the solution was supersaturated and nanoparticles were precipitated. The influence of antisolvent flow rate (1.6, 2 and 2.4 mL/min), temperature (34, 40 and 46), solute concentration (20, 60 and 100 mg/mL) and pressure (9, 12 and 15 MPa) on particle size and particle size distribution were studied. Particle analyses were performed by scanning electron microscopy (SEM) and Zetasizer Nano ZS. The mean particle size of 5-Fluorouracil was obtained in the range of 260–600 nm by varying the GAS effective parameters. The High performance liquid chromatography (HPLC) and Fourier transforms infrared spectroscopy (FTIR) analyses indicated that the 5-Fluorouracil nanoparticles were pure and the nature of the component did not change. The experimental results indicated that increasing the antisolvent flow rate and pressure, while decreasing the temperature and initial solute concentration, led to a decrease in 5-Fluorouracil particle size.  相似文献   

2.
Submicron particles were produced by rapid expansion of supercritical solution into air (RESS) or an aqueous surfactant solution (RESSAS) to minimize particle growth and to prevent particle agglomeration. Thereby the effect of process conditions on the size of the particles precipitated was investigated. The obtained product was evaluated by measuring particle size by 3-wavelength extinction measurements, dynamic light scattering, specific surface areas by nitrogen gas adsorption, melting behaviour by differential scanning calorimetry, particle morphology by X-ray diffraction, scanning electron micrographs (SEM), and drug loading by high performance liquid chromatography.Prior to the particle formation experiments, the melting temperature of Salicylic acid under CO2 pressure and the solubility of Salicylic acid in CO2 were measured. The size of Salicylic acid particles produced via RESS decreased from 230 to 130 nm as the pre-expansion temperature decreased from 388 to 328 K and the specific surface area of the micronized particles was found to be up to 60 times higher than that of the unprocessed material. RESSAS experiments demonstrate that in 1 wt.% Tween 80 solutions Salicylic acid concentrations of 4.6 g/dm3 could be stabilized with particle diameters in the range of 180 nm. Additional experiments show that Ibuprofen nanoparticles with an average size of 80 nm and a drug concentration of 2.4 g/dm3 could be stabilized in 1 wt.% Tween® 80 solutions. The use of a SDS solution instead of Tween® 80 results in a stable aqueous suspension of phytosterol nanoparticles, where the average particle size is 50 nm at a drug concentration of 5.6 g/dm3.  相似文献   

3.
Modeling of supercritical gas antisolvent (GAS) process was carried out for ampicillin nanoparticles synthesis. The particle size distribution of ampicillin limits bioavailability. Therefore, the kinetic data are essential for the control of particle size. Volume expansion and phase equilibrium modeling was studied to determine optimal operating conditions for experimental ampicillin production. Experimental ampicillin precipitations with GAS process at various antisolvent addition flow rates were investigated. The process model was then studied for the determination of nucleation and growth rate parameters. Equation of state, material and population balance equations were used for this modeling. A combination of the Crank-Nicholson and Lax-Wendroff methods was utilized to solve the population balance equation. Comparison of the experimental and modeling data showed that the model successfully predicted the particle size distribution. The effect of antisolvent addition rate on nucleation indicated that nucleation was enhanced via higher antisolvent addition rate and consequently smaller particle size was obtained. The mean particle sizes of ampicillin were obtained to be 357.09, 337.04 and 356.68 nm at antisolvent flow rates of 1.6, 2 and 2.4 mL/min, respectively.  相似文献   

4.
In recent years, plant derived polymers have evoked tremendous interest in the field of drug delivery. In this work, a promising anticancer drug, paclitaxel, was precipitated in the basil seeds mucilage (BSM) using supercritical carbon dioxide (SC-CO2). The employed SC-CO2 process in this research is a combination of gas antisolvent and phase inversion techniques and consists of two steps: (1) casting solution preparation, a uniform mixture of BSM, water, paclitaxel and dimethyl sulfoxide (DMSO), (2) simultaneous generation and precipitation of nanoparticles in BSM structure using SC-CO2 as antisolvent. The effect of DMSO/water ratio (4 and 6 (v/v)), pressure (10–16 MPa) and CO2 addition rate (1–3 mL/min) on mean particle size (MPS), particle size distribution (PSD) and drug loading efficiency (DLE) were studied. Particle analyses were performed by scanning electron microscopy (SEM) and Zetasizer. High performance liquid chromatography was utilized for studying DLE. Nanoparticles of paclitaxel (MPS of 117–200 nm depending on process variables) with narrow PSD were successfully precipitated in BSM structure with DLE of 56.8–78.2%. The FTIR spectra confirmed that paclitaxel actually precipitated in basil seeds mucilage. Experimental results indicated that higher DMSO/water ratio, pressure and CO2 addition decreased MPS and DLE.  相似文献   

5.
Naproxen has been processed with supercritical fluids in order to improve the dissolution rate and bioavailability. Microparticles of naproxen have been obtained by a Rapid Expansion of Supercritical Solutions (RESS) process in which carbon dioxide has been used as a solvent and methanol as a cosolvent. The influence of extraction pressure (200–300 bar) and extraction temperature (60 °C and 100 °C) on the naproxen precipitation has also been investigated. In general, the morphology of the precipitated particles improved and particle size (PS) decreased in comparison to the raw material. Lower extraction pressure and higher extraction temperature led to a smaller particle size. On the other hand, a supercritical antisolvent (SAS) process has been applied due to the relative medium solubility values of naproxen in supercritical carbon dioxide, with precipitation obtained successfully in all cases. The initial concentration of the solution and the solvent effect has both been analysed. Morphologies and mean diameter ranges have been analysed by scanning electron microscopy (SEM) and the influence on crystallinity of both supercritical processes has been evaluated by X-ray diffraction (XRD) measurements.  相似文献   

6.
Supercritical anti-solvent (SAS) process was employed to produce tadalafil solid dispersion sub-micron particles. Three independent variables for the SAS process (temperature, pressure, and drug concentration) were varied in order to investigate the effects on particle size and morphology of PVP/tadalafil solid dispersion (drug to polymer ratio 1:4). The mean particle size decreased with decreasing temperature (50  40 °C) and concentration (15  5 mg/mL) and increasing pressure (90  150 bar). Depending on the experimental variable, the mean particle size varied from 200 nm to 900 nm, and the dominant experimental variable was determined to be the drug concentration. Moreover, at a concentration of 15 mg/mL with any other process conditions, tadalafil tended to partially aggregate in crystalline form with irregular particle shapes. The results of in vitro dissolution experiments showed good correlation with mean particle size and crystallinity of the SAS-processed particles, in that the highest drug concentration showed the least dissolution rate and vice versa. Therefore, among the three variables studied, the drug concentration is the major factor that produces sub-micron particles in the SAS process.  相似文献   

7.
The supercritical antisolvent technology is used to crystallize paracetamol particles. Supercritical carbon dioxide (scCO2) is used as antisolvent. Ethanol, acetone and mixtures of ethanol and acetone are used as solvents. The initial concentration of paracetamol in the solution was varied between 1 and 5 wt%, the composition of the ethanol/acetone solvent mixture between 50 and 90 wt% of ethanol and the operation pressure between 10 and 16 MPa at a temperature of 313 K. The most important finding is that the polymorph of paracetamol crystals can be adjusted between monoclinic and orthorhombic by varying the content of ethanol in the solution. The second important finding is that the occurrence of primary and secondary crystal structures can be explained solely by the overall supersaturation during the crystallization process. While X-ray diffraction was used to analyze the polymorph of the particles, their morphology was analyzed using scanning electron microscopy.  相似文献   

8.
A recently developed supercritical assisted process, called Supercritical Assisted Injection in a Liquid Antisolvent (SAILA) is proposed to produce polymer micro and nanoparticles in water stabilized suspensions. Polymethylmethacrylate (PMMA) has been selected as the model polymer for a systematic study of the influence of the SAILA operating parameters on particle morphology and diameter. The effect of expanded liquid injection pressure on particle size and distribution was studied and different expanded liquid temperatures and compositions were also explored. Successful precipitation of the polymer in a water stabilized suspension was obtained and narrow particle size distributions were obtained using 70 and 90 bar injection pressures. PMMA particles controlled diameter were produced ranging between 0.2 ± 0.04 μm and 0.9 ± 0.2 μm. Particles are formed from the expanded liquid solution as a consequence of very fast supersaturation produced by spraying it the liquid antisolvent.  相似文献   

9.
A new approach is proposed to select operating temperature and pressure for supercritical antisolvent particle precipitation based on solubility parameter calculated by group contribution methods and using only the critical properties of the solvent. Solubility parameters are also used to choose the most suitable organic solvent for a given application. Supercritical antisolvent precipitation operating conditions of 36 systems are investigated including 8 organic solvents (methanol, ethanol, acetone, DMSO, DCM, chloroform, NMP and acetic acid) and 6 solid solutes (atenolol, tartaric acid, flunisolide, paracetamol, amoxicillin and cholesterol) in the temperature and pressure ranges of 25⿿85 °C and 50⿿250 bar. The results show a good agreement between the experimental and calculated data for these systems. Although particle precipitation depends on several parameters such as mass-transfer rates and hydrodynamics, the focus of this work is on the role of thermodynamics to indicate the preliminary conditions for a successful antisolvent precipitation process. Validation and results of this new approach suggest that it can be a useful tool for a qualitative and completely predictive evaluation of supercritical antisolvent particle precipitation in a cheaper way than carrying out experimental runs.  相似文献   

10.
The supercritical antisolvent technology is used to precipitate polyvinylpyrrolidone (PVP) particles and crystallise ibuprofen sodium (IS) crystals separately and in the form of solid dispersion together. Supercritical carbon dioxide (scCO2) is used as antisolvent. For PVP particle generation, ethanol, acetone and mixtures of ethanol and acetone are used as solvents. The initial concentration of PVP in the solution was varied between 0.5 wt% and 1.5 wt%, the operation pressure between 10 MPa and 30 MPa and the composition of ethanol/acetone solvent mixtures between 100 wt% and 0 wt% of ethanol at a constant temperature of 313 K. Furthermore, the mean molecular weight of the polymer was varied between 40 kg mol−1, 360 kg mol−1 and 1300 kg mol−1. An increase of the content of the poor solvent acetone in the initial solvent mixture as well as the usage of PVP with a higher molecular weight, leads to a significant decrease in mean particle size. At all the investigated parameters always fully amorphous PVP powder precipitates. For IS, only ethanol was used as the solvent, the initial IS concentration in the solution was varied between 1 wt% and 3 wt% and the operation pressure between 10 MPa and 16 MPa. A variation of these parameters leads to a manipulation of the size and the morphology of the crystallised IS crystals. Irrespective of the parameters used, always the same polymorphic form of ibuprofen sodium is produced. The solid dispersions were generated at different compositions of PVP to IS and with two different molecular weights of PVP at otherwise constant conditions. Fully amorphous solid dispersions consisting of IS and PVP together were generated at different ratios of PVP to IS.The mechanisms that control the final particle properties are discussed taking into account two different models for “ideal” and “non-ideal” solutes. Furthermore, the study of the “unconventional” SAS parameters, molecular weight and solvation power of the solvent shows that these parameters qualify to tailor polymer particle properties via SAS processing. Next to the investigation into the behaviour of both solutes separately, fully amorphous solid dispersions consisting of IS and PVP together were generated. While X-ray diffraction was used to analyze the crystalline structure of the particles, respectively, solid dispersions, their morphology was analysed using scanning electron microscopy (SEM).  相似文献   

11.
Sub-micrometric particles of PMMA were successfully prepared via a supercritical assisted-atomization (SAA) process using acetone as a solvent and supercritical carbon dioxide as a spraying medium. The effects of several key factors on the particle size were investigated. These factors included the concentration of polymer solution, temperature in saturator and volumetric flow rate ratio of carbon dioxide to polymer solution. The shape of the polymer's primary particles is spherical with the arithmetic mean size ranging from 82 nm to 176 nm and the mass-weighted mean size ranging from 127 nm to 300 nm. As evidenced from the experimental results, the lower concentrations of polymer solution, optimized volumetric flow rate ratios, and higher temperatures in saturator can effectively reduce the mean particle size. The precipitation kinetic parameters were determined from the particle size distributions with the aid of the population balance theory. This study found the primary nucleation to be dominant in the precipitation and diffusion may govern particle growth.  相似文献   

12.
Morphology and particle size distribution of levothyroxine sodium are experimentally investigated by comparing gas antisolvent (GAS) and atomized rapid injection for solvent extraction (ARISE) techniques using dense CO2. Precipitation of levothyroxine sodium from ethanol was carried out at 25, 40 and 50 °C, with pressure in the 90–120 bar range and different concentrations of the organic solution. Particles produced by the GAS process are nanospheres whereas ARISE processed particles are either spherical or rod-like micro and nanoparticles. Particle size and size distributions of GAS processed levothyroxine sodium are in the 370–500 nm range, while the ARISE process produced particles in the 360–1200 nm range. In most cases, both techniques produced bimodal size distributions, due to particle agglomeration. The different morphological characteristics and particle size distributions of levothyroxine sodium obtained using GAS and ARISE at different operating conditions can be useful depending on the type of drug formulation chosen, as well as the route of drug administration and delivery system.  相似文献   

13.
In the supercritical antisolvent precipitation (SAS), the jet fluid dynamics is characterized by two-phase mixing at subcritical conditions, and by one-phase mixing at completely developed supercritical conditions. The amplitude of the pressure range, in which binary systems organic solvent/scCO2 exhibit the transition between two-phase to one-phase mixing, depends on the organic solvent that is in contact with supercritical carbon dioxide (scCO2) and conditions the morphology of the microparticles produced by SAS. When this pressure range is wide, as in the case of dimethylsulfoxide (DMSO), solutes solubilized in the organic solvent can be precipitated as microparticles by atomization, droplets formation and drying; when this pressure range is narrow, as for acetone, gas mixing prevails and only nanoparticles are generally observed. Therefore, generally speaking, solutes that are soluble only in solvents exhibiting gas mixing in scCO2, do not exhibit microparticles morphology and this fact is a limitation for several industrial applications.In this work, a model compound, cellulose acetate (CA), that is slightly soluble in DMSO and freely soluble in acetone, was processed by SAS using mixtures of the two solvents that exhibit intermediate behaviors between the two pure solvents, to extend two phase mixing and produce CA microparticles. Using different DMSO/acetone mixture percentages, the effects of the polymer concentration in the liquid solution and of the pressure were studied. A mixture of DMSO/Acetone 50/50 (v/v), at a pressure of 85 bar and a concentration of the liquid solution equal to 40 mg/mL, efficiently produced non-coalescing CA microparticles with a mean diameter of 0.42 μm and a standard deviation of about 0.15 μm, demonstrating that this SAS strategy can be successful.  相似文献   

14.
In order to improve the efficiency of processes using supercritical (sc) carbon dioxide (CO2) to micronize the carotenoid “lycopene”, it is important to know the solubility of lycopene in mixtures of the organic solvent ethyl acetate (EA) and the antisolvent CO2 at elevated pressures. The solubility of lycopene has been determined for different temperatures (313–333 K), pressures (12–16 MPa) and CO2 molar fractions (0.58–1). The obtained data show that CO2 acts as an antisolvent in the system lycopene/EA/CO2 in the range of CO2/EA ratios studied. The solubility of lycopene is rather small with lycopene molar fractions ranging from 0.1 × 10−6 to 46 × 10−6. The solubility of lycopene increases with temperature, pressure and EA concentration.  相似文献   

15.
Laser based Raman and elastic light scattering measurements were performed to study the process of mixture formation and the influence of the solute paracetamol onto the phase behaviour of the pseudo-binary system ethanol/CO2 in the supercritical antisolvent process. From the Raman based technique, mole fraction and partial density distributions of CO2 were obtained. The mole fraction distributions indicate a rapid mixture formation with fast supersaturation of the solute. At the same time, the increase of the CO2 partial density at conditions considerably above the mixture critical point (MCP) indicate a change from a homogeneous supercritical to a multi-phase subcritical flow. This phase change goes along with particle precipitation. Thus, the results of our investigations proof, why past approaches failed to generate amorphous paracetamol nanoparticles with the system paracetamol/ethanol/CO2 above the MCP. Process parameters like injection pressure (20.0–35.0 MPa), chamber pressure of CO2 (7.5–17.5 MPa), temperature (313–333 K) and solute concentration (0–5 wt%) were varied.  相似文献   

16.
Microparticles of ethyl cellulose (EC) and amoxicillin (AMC) have been precipitated by a supercritical antisolvent process (SAS) using CO2 as the antisolvent and a mixture of dichloromethane (DCM) and dimethyl sulfoxide (DMSO) as solvents. Combinations of three temperatures (308, 323 and 333 K) and four pressures (100, 150, 200 and 250 bar) were assessed in the vessel and the rest of the variables were held constant (i.e. CO2 flow rate, sample flow rate, washing time, nozzle diameter and the amoxicillin:ethyl cellulose ratio). Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and elemental analysis (EA) were used to determine the particle size and shape and to confirm the presence of both compounds in the resulting precipitates. In most cases, mixed amoxicillin and ethyl cellulose particles were produced with sizes in the micrometer range. Pressure and temperature effects on the co-precipitation were investigated. The release behaviour of the microparticles precipitated by the SAS process was evaluated in two biological fluids – simulated gastric and simulated intestinal fluids. Co-precipitated materials allowed a slower drug release rate than pure drug.  相似文献   

17.
Natural compounds with biological activity have recently attracted special interest in the agro-industry as sources of additives in nutraceutical food production and pharmaceutical industries. Herein, we evaluated extracts obtained from peach palm fruit (Bactris gasipaes) using supercritical carbon dioxide, in terms of yield, total phenolic content, total flavonoids, total carotenoids, and antioxidant activity by β-carotene bleaching method. Extractions were performed at 40, 50, and 60 °C and 100, 200, and 300 bar; additionally, Soxhlet (with petroleum ether) and methanol extraction were conducted. The results showed that supercritical CO2 allows obtaining extracts rich in carotenoids and, although it presents lower yield than conventional extraction (SOX), supercritical CO2 represents a technique with greater advantages. The best operation condition for supercritical extraction was 300 bar–40 °C, given that the highest concentration of carotenoids was obtained, without the yield being significantly different from that obtained with 300 bar–60 °C, this extract had antioxidant activity comparable to that of commercial caffeic acid.  相似文献   

18.
The objective of the study was to prepare vinblastine microparticles by supercritical antisolvent process using N-methyl-2-pyrrolidone as solvent and carbon dioxide as antisolvent and evaluate its physicochemical properties. The effects of four process variables, pressure, temperature, drug concentration and drug solution flow rate, on drug particle formation during the supercritical antisolvent process, were investigated. Particles with a mean particle size of 121 ± 5.3 nm were obtained under the optimized process conditions (precipitation temperature 60 °C, precipitation pressure 25 MPa, vinblastine concentration 2.50 mg/mL and vinblastine solution flow rate 6.7 mL/min). The vinblastine was characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, mass spectrometry and dissolution test. It was concluded that physicochemical properties of crystalline vinblastine could be improved by physical modification, such as particle size reduction and generation of amorphous state using the supercritical antisolvent process. Furthermore, the supercritical antisolvent process was a powerful methodology for improving the physicochemical properties of vinblastine.  相似文献   

19.
This article introduces a new high-pressure process for the gentle drying, micronisation and formulation of high molecular mass gelatine. Spray drying of gelatine solutions is a well-established process for very low molecular weight gelatine, aqueous solutions containing low gelatine concentrations or gelatine solutions containing viscosity reducing additives. In the introduced process, supercritical CO2 was applied to micronised aqueous gelatine solutions and was then expanded from high pressure into a spraying chamber to remove the water content by extraction and evaporation under moderate conditions. The resulting product was analysed using common powder analysis methods. Aqueous gelatine solutions with a dry mass content of up to 50 wt.% with a molecular mass of 156,000 g mol?1 were pulverised and dried with this process, with only limited degradation by hydrolysis during processing.  相似文献   

20.
In this work different samples of Brazilian macauba oil obtained from mechanical pressing were characterized and production of esters of fatty acids using a catalyst-free continuous process under supercritical alcohols was assessed. Analysis of oil samples showed that the major fatty acid on pulp oil was oleic acid (mean value 62.8%), the amount of free fatty acid (FFA) was very high (37.4–65.4%), samples contained glycerides (7.4–16.5% TAG, 14.2–16.8% DAG and 1.0–3.4% MAG) and moisture was around 1.0%. Oil was processed in a continuous reactor using supercritical methanol or ethanol and the effects of temperature (573, 598, 623 and 648 K), pressure (10, 15 and 20 MPa), oil to alcohol molar ratio (1:20, 1:30 and 1:40), water concentration (0, 5 and 10 wt% added) and the flow rate of reaction mixture (1.0, 1.5, 2.0, 2.5 and 3.0 mL/min) on process efficiency were evaluated. The highest ester content achieved in reactions with supercritical methanol was 78.5% (648 K, 15 MPa, 1:30 oil:methanol molar ratio, 5 wt% water and 2.5 mL/min flow rate), while with supercritical ethanol was 69.6% (598 K, 15 MPa, 1:30 oil:ethanol molar ratio, 5 wt% water and 2.0 mL/min flow rate). The extent of the reaction was explored using a novel parameter, convertibility, which corresponds to the maximum ester content attainable from the feedstock. According to the convertibility of macauba pulp oil, the highest ester content corresponded to efficiencies of 98.0% and 86.9%, respectively. Results demonstrate that macauba oil might be a potential alternative for biodiesel production, though purification steps should be taken into account to achieve biodiesel specifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号