首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes an on-machine measurement (OMM) of all location errors on five-axis machine tools. Five machining patterns are successively performed on a cubic workpiece. The basic idea is to use a set of large rotations of rotary axes to prolong the moving distance of linear axes when squareness errors of linear axes are identified. Then, a set of small rotations of rotary axes are used to decouple the squareness errors of linear and rotary axes. Based on this, the long and deep slots in previous machining tests are improved to be a set of short and shallow ones. These miniaturized slots reduce the material removal and minimize the influence of cutting force and thermal deformation on the measuring results. Then the cutting tool is substituted by a laser displacement sensor (LDS) to measure the mismatch between the finished surfaces of the corresponding slots. All the measured surfaces are located on the bottom of the slots to fit the LDS characteristic of one dimensional measurement. Three gestures of the rotary table and tilting head are used to implement the single-setup OMM and the influence of location errors on the measuring results is compensated. Validation of the identified values is also provided by a set of simple tests using different measuring instruments. The efficiency and accuracy of location errors measurement method on five-axis machine tools are improved.  相似文献   

2.
The geometric errors of rotary axes are the fundamental errors of a five-axis machine tool. They directly affect the machining accuracy, and require periodical measurement, identification and compensation. In this paper, a precise calibration and compensation method for the geometric errors of rotary axes on a five-axis machine tool is proposed. The automated measurement is realized by using an on-the-machine touch-trigger technology and an artifact. A calibration algorithm is proposed to calibrate geometric errors of rotary axes based on the relative displacement of the measured reference point. The geometric errors are individually separated and the coupling effect of the geometric errors of two rotary axes can be avoided. The geometry error of the artifact as well as its setup error has little influence on geometric error calibration results. Then a geometric error compensation algorithm is developed by modifying the numeric control (NC) source file. All the geometric errors of the rotary errors are compensated to improve the machining accuracy. The algorithm can be conveniently integrated into the post process. At last, an experiment on a five-axis machine tool with table A-axis and head B-axis structure validates the feasibility of the proposed method.  相似文献   

3.
Modelling geometric and thermal errors in a five-axis cnc machine tool   总被引:2,自引:0,他引:2  
The total volumetric error within the workspace of a machine tool is induced by the propagation of both scalar and position dependent geometrical errors, as well as time-variant thermal errors. This paper presents a compact volumetric error model which can be used as a basis for a practical compensation scheme. The broad objective is to increase the achievable accuracy of an industrial five-axis CNC machine tool. In place of using Denavit-Hartenberg (D-H) transformations, the method used here directly considers the shape and joint transformations for inaccurate links and joints using small angle approximations and then finds the total volumetric error in the workspace as a function of all the possible errors.The development of the model shows that angular deviations are independent of translational errors. However, the tool point deviations are dependent on both translational and rotational errors. The model has been used for the design and testing of a compensation strategy. The simulation studies indicate that CNC compensation for errors in X, Y and Z axes is possible. However, the capability of the CNC compensation for pitch, roll and yaw errors is dependent on the positioning of the rotary axes on the machine tool. This is shown by an example using the compensation scheme developed.  相似文献   

4.
Volumetric positional accuracy constitutes a large portion of the total machine tool error during machining. In order to improve machine tool accuracy cost-effectively, machine tool geometric errors as well as thermally induced errors have to be characterized and predicted for error compensation. This paper presents the development of kinematic error models accounting for geometric and thermal errors in the Vertical Machining Center (VMC). The machine tool investigated is a Cincinnati Milacron Sabre 750 3 axes CNC Vertical Machining Center with open architecture controller. Using Rigid Body Kinematics and small angle approximation of the errors, each slide of the three axes vertical machining center is modeled using homogeneous coordinate transformation. By synthesizing the machine's parametric errors such as linear positioning errors, roll, pitch and yaw etc., an expression for the volumetric errors in the multi-axis machine tool is developed. The developed mathematical model is used to calculate and predict the resultant error vector at the tool–workpiece interface for error compensation.  相似文献   

5.
The linear and rotary axes of a five-axis machine tool are driven simultaneously to generate a specified tool position and orientation in workpiece coordinates. It is crucial that these servo-controlled axes are of balanced dynamics to achieve high tracking accuracy. In this paper, ballbar circular tests for all possible combinations of linear and rotary axes of a five-axis machine tool are investigated and total ballbar dynamic tests are proposed. Through the relational arrangement of the test sequence, the total ballbar dynamic tests can be employed to identify dynamic differences between linear and rotary axes. More importantly, the velocity gains of the position control loops of all servo-controlled linear and rotary axes can be tuned synchronously to eliminate gain mismatch errors. Experimental results have proved the effectiveness of the new methods.  相似文献   

6.
In this study, position-independent geometric errors, including offset errors and squareness errors of rotary axes of a five-axis machine tool are measured using a double ball-bar and are verified through compensation. In addition, standard uncertainties of measurement results are calculated to establish their confidence intervals. This requires two measurement paths for each rotary axis, which are involving control of single rotary axis during measurement. So, the measurement paths simplify the measurement process, and reduce measurement cost including less operator effort and measurement time. Set-up errors, which are inevitable during the installation of the balls, are modeled as constants. Their effects on the measurement results are investigated to improve the accuracy of the measurement result. A novel fixture consisting of flexure hinges and two pairs of bolts is used to minimize set-up error by adjusting the ball's position located at the tool nose. Simulation is performed to check the validation of measurement and to analyze the standard uncertainties of the measurement results. Finally, the position-independent geometric errors of the five-axis machine tool (involving a rotary axis and a trunnion axis) are measured using proposed method.  相似文献   

7.
以某立式加工中心为研究载体,提出一种空间精度补偿技术。以旋量理论为基础,在充分考虑机床切削点空间位置的基础上,建立包含全部几何误差的立式加工中心空间精度模型,同时输出空间精度显示预测模型。针对传统空间精度补偿不充分的局限性,将空间精度补偿思路转换为NC代码最优化问题,基于遗传算法求解该最优化问题,通过实验验证优化结果的有效性。结果表明:基于旋量理论的机床空间精度建模包含21项几何误差,空间精度预测结果较为准确;基于NC代码最优化的空间精度补偿技术使得机床空间定位精度最大补偿率为90.94%,验证了所提方法的有效性。  相似文献   

8.
This paper proposes an efficient and automated scheme to predict and identify the position and motion errors of rotary axes on a non-orthogonal five-axis machining centre using the double ball bar (DBB) system. Based on the Denavit-Hartenberg theory, a motion deviations model for the tilting rotary axis B and rotary C of a non-orthogonal five-axis NC machine tool is established, which considers tilting rotary axis B and rotary C static deviations and dynamic deviations that total 24. After analysing the mathematical expression of the motion deviations model, the QC20 double ball bar (DBB) from the Renishaw Company is used to measure and identify the motion errors of rotary axes B and C, and a measurement scheme is designed. With the measured results, the 24 geometric deviations of rotary axes B and C can be identified intuitively and efficiently. This method provides a reference for the error identification of the non-orthogonal five-axis NC machine tool.  相似文献   

9.
Calibration and modeling of thermally induced errors is a critical part of enhancing machine accuracy by software error compensation. In most applications, parametric thermal errors of a machine tool are calibrated and modeled individually by air-cutting experiments. Calibrating thermal errors individually is time-consuming and may neglect thermal interaction among thermal sources. The accuracy of the air-cutting model in real machining is also questionable. In this report, thermal errors of multiple machine axes in real cutting were calibrated simultaneously by a quick set-up measurement system consisting of on-machine probes and artifacts. Characteristics of thermal errors in real cutting under different cutting conditions, cutting paths and workpiece materials were investigated. It was found that thermal errors in real machining were distinct from those in air cutting.  相似文献   

10.
为了提高数控机床的加工精度,解决由机床三维空间误差引起的工件加工质量降低的问题,在研究多体系统理论误差建模技术的基础上,提出离线补偿和嵌入式补偿两种补偿策略。离线补偿是基于数控加工程序的修正补偿,将机床三维空间误差映射到数控加工程序,通过修改加工程序实现对机床的三维空间误差补偿;嵌入式补偿是基于数控系统的在线补偿,将机床三维空间误差融合到数控系统中,通过修正数控系统中的数据流实现对机床的三维空间误差补偿。实验表明,在不影响机床可靠性的前提下,两种补偿策略均显著提高了数控机床的加工精度。  相似文献   

11.
This paper proposes a machining test to parameterize error motions, or position-dependent geometric errors, of rotary axes in a five-axis machine tool. At the given set of angular positions of rotary axes, a square-shaped step is machined by a straight end mill. By measuring geometric errors of the finished test piece, the position and the orientation of rotary axis average lines (location errors), as well as position-dependent geometric errors of rotary axes, can be numerically identified based on the machine׳s kinematic model. Furthermore, by consequently performing the proposed machining test, one can quantitatively observe how error motions of rotary axes change due to thermal deformation induced mainly by spindle rotation. Experimental demonstration is presented.  相似文献   

12.
Ensuring that a five-axis machine tool is operating within tolerance is critical. However, there are few simple and fast methods to identify whether the machine is in a “usable” condition. This paper investigates the use of the double ball bar (DBB) to identify and characterise the position independent geometric errors (PIGEs) in rotary axes of a five-axis machine tool by establishing new testing paths. The proposed method consists of four tests for two rotary axes; the A-axis tests with and without an extension bar and the C-axis tests with and without an extension bar. For the tests without an extension bar, position errors embedded in the A- and C-axes are measured first. Then these position errors can be used in the tests with an extension bar, to obtain the orientation errors in the A- and C-axes based on the given geometric model. All tests are performed with only one axis moving, thus simplifying the error analysis. The proposed method is implemented on a Hermle C600U five-axis machine tool to validate the approach. The results of the DBB tests show that the new method is a good approach to obtaining the geometric errors in rotary axes, thus can be applied to practical use in assembling processes, maintenance and regular checking of multi-axis CNC machine tools.  相似文献   

13.
Five-axis machine tools can be programmed to keep a constant nominal tool end point position while exercising all five axes simultaneously. This kinematic capability allows the use of a 3D proximity sensing head mounted at the spindle to track the position changes of a precision steel ball mounted on the machine table effectively measuring the 3D Cartesian volumetric errors of the machine. The new sensing head uses capacitive sensors to gather data on the fly during a synchronized five-axis motion which lasts less than 2 min. Because the measured volumetric errors are strongly affected by the link geometric errors, they can be used to estimate the link errors through an iterative procedure based on an identification Jacobian matrix. The paper presents the new sensor, the identification model and the experimental validation. The approach allows all eight link errors i.e. the three squarenesses of linear axes and the four orientations and center lines offset of the rotary axes to be estimated with the proposed single setup test. The estimation approach is performed on a horizontal five-axis machine tool. Then, using the estimated link errors, the volumetric errors are predicted for axes combinations different from those used for the identification process. The estimated machine model correctly predicts 52–84% of the volumetric errors for the tested trajectories.  相似文献   

14.
The extraction of component errors of a machine tool’s axes is a critical step for the synthesis of 3D volumetric error mapping, which is a prerequisite to improve the machine tool accuracy by numerical error compensation. This paper presents a method for the extraction of machine tool component errors from a statistical point of view. First, the B-Spline mathematical model is established to represent the component error function, and the least-squares fitting method to measured data points is presented. Then, statistical analysis is used to select the B-Spline model with proper flexibility, so as to separate repeatable errors from random errors in the measured data. Finally, based on the component error extraction method, numerical error compensation experiments were conducted on the XY-plane of a high precision machine tool by using a cross-grid scale system. According to the statistical analysis of the experimental data, all repeatable errors except the dynamic errors caused by machine tool control system were compensated for.  相似文献   

15.
Inverse kinematics of five-axis machines near singular configurations   总被引:9,自引:0,他引:9  
In five-axis milling, singular configurations of the machine axes may cause tool path errors or collisions between the tool and parts of the milling machine. This paper presents an algorithm for calculating the inverse kinematics of five-axis machines close to singular configurations. The algorithm modifies the exact inverse kinematics in order to give robustness to singularities at the expense of a small tool orientation deviation. The kinematics of a five-axis machine with non-orthogonal rotary axes is analyzed. The forward kinematics is developed, and a closed form solution of the inverse kinematics is presented. The kinematics and the singularity algorithm are implemented in a postprocessor, and machining tests are conducted to verify the algorithms.  相似文献   

16.
王调品  李峰 《机床与液压》2021,49(24):88-91
为提高某立式加工中心整机加工精度,借助旋量理论建立完备立式加工中心空间误差模型,在此基础上实现机床空间误差有效补偿.以旋量理论为基础推导并建立机床刀具运动链与工件运动链运动学正解,分析机床21项几何误差原理,在考虑21项几何误差的基础上建立该立式加工中心完备空间误差模型;利用九线法完成各项几何误差辨识;基于旋量运动学正解求解机床运动学逆解后得出运动轴实际运动路径,并通过体对角线实验对比补偿前后的效果.结果表明:所提补偿方法补偿效果显著,验证了机床空间误差模型的准确性,实现了提高机床加工精度的目的.  相似文献   

17.
Double ballbar test for the rotary axes of five-axis CNC machine tools   总被引:2,自引:0,他引:2  
In this paper a new method that uses the double ballbar to inspect motion errors of the rotary axes of five-axis CNC machine tools is presented. The new method uses a particular circular test path that only causes the two rotary axes to move simultaneously and keeps the other three linear axes stationary. Therefore, only motion errors of the two rotary axes will be measured during the ballbar test. The theoretical trace patterns of various error origins, including servo mismatch and backlash, are established. Consequently, the error origins in the rotary block can be diagnosed by examining whether similar patterns appear in the motion error trace. The method developed was verified by practical tests, and the servo mismatch of the rotary axes was successfully detected.  相似文献   

18.
黄强  邓萌  钟开英 《机床与液压》2021,49(15):87-92
采用空间误差补偿技术,可有效提高数控机床的空间定位精度。以一台精密卧式加工中心为对象,系统阐述其几何误差补偿中的关键问题及解决方案。通过三维误差建模与分析,得到该机床的21项几何误差中有17项需要测量和补偿,另外4项误差对机床定位精度的影响甚微。以此为依据,设计误差测量及补偿方案,并给出误差的具体测量方法和补偿结果。结果表明:经过一次系统地误差测量与补偿,精密卧式加工中心的空间定位精度可以提高50%~70%;合理规划和实施空间误差测量,可大幅提高测量效率。  相似文献   

19.
为了改变机床空间误差综合性的测量手段和补偿技术在国内机床制造和生产中应用较少的现状和研究数控机床空间精度提升方法,介绍数控机床平动轴的21项误差和激光跟踪仪的空间误差测试原理,阐述测量与辨识机床空间误差的步骤和方法。在桥式五轴加工中心上进行空间误差测试,给出数控机床空间误差结果,并生成误差补偿文件,通过西门子的VCS功能进行了误差补偿。并对比分析了补偿前后的21项误差,对补偿前后数据的差异进行原因分析,并通过对机床空间体对角线的测量验证了空间误差测量与补偿的实际效果,补偿后误差缩小为原来的11.2%,应用该技术能够大大提高机床的空间精度。  相似文献   

20.
A new compensation method for geometry errors of five-axis machine tools   总被引:4,自引:1,他引:4  
The present study aims to establish a new compensation method for geometry errors of five-axis machine tools. In the kinematic coordinate translation of five-axis machine tools, the tool orientation is determined by the motion position of machine rotation axes, whereas the tool tip position is determined by both machine linear axes and rotation axes together. Furthermore, as a nonlinear relationship exists between the workpiece coordinates and the machine axes coordinates, errors in the workpiece coordinate system are not directly related to those of the machine axes coordinate system. Consequently, the present study develops a new compensation method, the decouple method, for geometry errors of five-axis machine tools. The method proposed is based on a model that considers the tool orientation error only related to motion of machine rotation axes, and it further calculates the error compensations for rotation axes and linear axes separately, in contrast to the conventional method of calculating them simultaneously, i.e. determines the compensation of machine rotation axes first, and then calculates the compensation associated with the machine linear axes. Finally, the compensation mechanism is applied in the postprocessor of a CAM system and the effectiveness of error compensation is evaluated in real machine cutting using compensated NC code. In comparison with previous methods, the present compensation method has attributes of being simple, straightforward and without any singularity point in the model. The results indicate that the accuracy of positioning was improved by a factor of 8–10. Hence, the new compensation mechanism proposed in this study can effectively compensate geometry errors of five-axis machine tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号