首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Griseofulvin (GF) is an antifungal drug whose pharmaceutical activity can be improved by reducingparticle size. In this study the rapid expansion of supercritical solution (RESS) was employed to micronize GF.Carbon dioxide with cosolvent acetone was chosen as a supercritical mixed solvent. The solubility of GF in super-critical CO2 with cosolvent acetone was measured using a dynamic apparatus at pressures between 12 and 32 MPa,temperatures at 313, 323 and 333K and cosolvent concentration at 1.5, 3.0, 4.5 and 6.0% (by mole). The effect ofpre-expansion pressure, extraction temperature, spraying distance, nozzle size and concentration of cosolvent on theprecipitated particles was investigated. The results show that the mean particle size of griseofulvin precipitated byRESS was less than 1.2 μm. An increase in pre-expansion pressure, extraction temperature, spraying distance andconcentration of cosolvent resulted in a decrease in particle size under the operating condition studied. With thedecrease of nozzle diameter the particle size reduces. The crystallinity and melting point of the original material andthe processed particle by RESS were tested by X-ray diffraction (XRD) and differential scanning calorimetry (DSC).No evident modification in the crystal habit was found under the experimental conditions tested. The morphologyof particles precipitated was analyzed by scanning electron microscopy (SEM).  相似文献   

2.
超临界快速膨胀法制备植物甾醇超细微粒   总被引:7,自引:1,他引:6  
通过药物颗粒的微细化,降低其粒度,增大比表面积,进而提高药物颗粒的溶解度,可以有效地改善难溶药物的生物利用度。该文采用超临界流体快速膨胀法(RESS)微细化植物甾醇颗粒。利用SEM分析了沉淀颗粒的形貌及粒径大小。分析了过程参数与所制备颗粒粒度的关系。研究发现,当喷嘴内径Dn从60μm减小到40μm,植物甾醇颗粒粒径由10~20μm减小为5μm;预膨胀压力p0从15MPa增加到25MPa时,颗粒粒径由10~15μm降至5μm;预膨胀温度T0由318K升高到333K时,颗粒粒径由5~10μm减小为1μm,粒径分布也趋于均匀。喷嘴温度Tn对粒径无显著影响。该法制备得到1~20μm无定形植物甾醇微细颗粒,且具有更高的溶解速率,比原料植物甾醇早3h达到饱和溶解度。  相似文献   

3.
用超临界CO2快速膨胀法制备了SiO2/聚氨酯超疏水涂层。首先用十三氟辛基三乙氧基硅烷(F-硅烷)和γ-(甲基丙烯酰氧基)丙基三甲氧基硅烷(KH-570)改性纳米二氧化硅,制备出含双键的纳米二氧化硅粒子,将其分散在超临界CO2中,再利用超临界CO2快速膨胀法将其喷射到双键封端的且已添加了引发剂的聚氨酯涂层表面,通过加热,使纳米二氧化硅粒子接枝在聚氨酯涂层表面,形成稳固粗糙结构,获得了超疏水性质。研究了喷嘴温度、反应釜温度和压力、偶联剂配比、表面粗糙度对涂层疏水性的影响。结果表明:涂层的静态水接触角可达到169.1°±0.6°;在喷嘴和釜内温度都为90℃,釜内压力为16 MPa,F-硅烷和KH-570配比为1∶1,表面粗糙度为7.3 μm时,所制得涂层具有较好的超疏水性,且具有优良的耐刮伤性。该法高效环保,涂层性能优良,适于大面积制备。  相似文献   

4.
Hydroresin dispersions are a new class of emulsifier free polyacrylate secondary dispersions. They are prepared by the emulsification of self-emulsifying polymer blends in water. The blends typically consist of two polymers, one is a salt group containing copolymer, the other is a hydrophobic polymer without salt groups. The particle diameters can be controlled by the amount of salt group containing polymer and the concentration of salt groups in this polymer. One advantage over conventional secondary dispersions is the fact that they are not only water dilutable but free of organic solvents. Another advantage is the extremely low content of hydrophilic salt groups in the resulting polymer mixture, which leads to very hydrophobic films. The application properties of these aqueous systems are more similar to those of organic polymer solutions than to conventional emulsion polymers. Applications of these surfactant free binders are in areas such as solvent face road marking paints and corrosion protection coatings without active pigments. The technique for the preparation of hydroresin dispersions is also useful for the creation of latex particles with core-shell structures. Two examples are given, which differ in the glass transition temperature of both the cores and the shells. From these dispersions, films with defined morphology can be prepared. A blending of the polymers with hydrophobic low molecular weight compounds, before the emulsification step, is also possible. It can be used for the incorporation of additional functions into the latex particles. As an example, the loading of latexes with a hydrophobic fluorescent dye is given.  相似文献   

5.
It has been shown that nano‐sized particles of secondary explosives are less sensitive to impact and can alter the energetic performance of a propellant or explosive. In this work the Rapid Expansion of a Supercritical Solution into an Aqueous Solution (RESS‐AS) process was used to produce nano‐sized RDX (cyclo‐1,3,5‐trimethylene‐2,4,6‐trinitramine) particles. When a saturated supercritical carbon dioxide/RDX solution was expanded into neat water, RDX particles produced from the RESS‐AS process agglomerated quickly and coarsened through Ostwald ripening. However, if the pH level of the suspension was changed to 7, particles were metastably dispersed with a diameter of 30 nm. When the supercritical solution was expanded into air under the same pre‐expansion conditions using the similar RESS process, RDX particles were agglomerated and had an average size of approximately 100 nm. Another advantage of using a liquid receiving solution is the possibility for coating energetic particles with a thin layer of polymer. Dispersed particles were formed by coating the RDX particles with the water soluble polymers polyvinylpyrrolidone (PVP) or polyethylenimine (PEI) in the RESS‐AS process. Both PVP and PEI were used because they have an affinity to the RDX surface. Small and well‐dispersed particles were created for both cases with both PVP and PEI‐coated RDX particles shown to be stable for a year afterward. Several benefits are expected from these small polymer coated RDX particles such as decreased sensitivity, controlled reactivity, and enhanced compatibility with other binders for fabrication of bulk‐sized propellants and/or explosives.  相似文献   

6.
A facile method to prepare superhydrophobic fluoropolymer/SiO2 nanocomposites coating on polyester (PET) fabrics was presented. The vinyl nanosilica (V? SiO2) hydrosols were prepared via one‐step water‐based sol‐gel reaction with vinyl trimethoxy silane as the precursors in the presence of the base catalyst and composite surfactant. Based on the V? SiO2 hydrosol, a fluorinated acrylic polymer/silica (FAP/SiO2) nanocomposite was prepared by emulsion polymerization. The FAP/SiO2 nanocomposites were coated onto the polyester fabrics by one‐step process to achieve superhydrophobic surfaces. The results showed that silica nanoparticles were successfully incorporated into the FAP/SiO2 nanocomposites, and a specific surface topography and a low surface free energy were simultaneously introduced onto PET fibers. The prepared PET fabric showed excellent superhydrophobicity with a water contact angle of 151.5° for a 5 μL water droplet and a water shedding angle of 12° for a 15 μL. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40340.  相似文献   

7.
Supercritical carbon dioxide (SC CO2) is used as a reversible plasticizing agent to promote solvent welding in highly oriented LLDPE films. These films are laid up in a quasi‐Isotropic fashion to enhance material properties in all directions. It is shown tht, after processing, the oriented morphology and crystallinity are effectively unchanged. These laminated films are investigated both physically and mechanically. The mechanical strength of laminate interfaces is tested using a T‐Peel test. Tensile properties of the laminated film are evaluated and compared to the single oriented plies. Tear resistance is measured using a single specimen J1C.  相似文献   

8.
Griseofulvin (GF) is an antifungal drug whose pharmaceutical activity can be improved by reducing particle size. In this study the rapid expansion of supercritical solution (RESS) was employed to micronize GF.Carbon dioxide with cosolvent acetone was chosen as a supercritical mixed solvent. The solubility of GF in super-critical CO2 with cosolvent acetone was measured using a dynamic apparatus at pressures between 12 and 32 MPa,temperatures at 313, 323 and 333 K and cosolvent concentration at 1.5, 3.0, 4.5 and 6.0% (by mole). The effect of pre-expansion pressure, extraction temperature, spraying distance, nozzle size and concentration of cosolvent on the precipitated particles was investigated. The results show that the mean particle size of griseofulvin precipitated by RESS was less than 1.2μm. An increase in pre-expansion pressure, extraction temperature, spraying distance and concentration of cosolvent resulted in a decrease in particle size under the operating condition studied. With the decrease of nozzle diameter the particle size reduces. The crystallinity and melting point of the original material and the processed particle by RESS were tested by X-ray diffraction (XRD) and differential scanning calorimetry (DSC).No evident modification in the crystal habit was found under the experimental conditions tested. The morphology of particles precipitated was analyzed bY scanning electron microscopy (SEM).  相似文献   

9.
Nafion®‐117 was exposed to supercritical fluid (SCF) CO2 and a cation solution using two different approaches: first was processed with SCF CO2, and then exchanged using six different cations: K+1, Ca+2, Ba+2, Cu+2, Fe+3, and Al+3. The second method performed the cation substitution first, followed by the SCF CO2 processing. The resulting composite membranes were characterized using several techniques: thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transforms infrared spectroscopy (FT‐IR), small angle X‐ray scattering (SAXS), and X‐ray diffraction (XRD). These techniques were used to identify the changes in the chemical and thermal properties of the membranes, as well as to evaluate changes in the resulting morphologies and crystallinities. Proton conductivity and methanol permeability were measured to understand how the different approaches promoted or inhibited the transport of certain substances through the membrane. Significant differences in their thermal, physical and transport properties were observed when Nafion® was processed with SCF CO2 and exchanged with cations. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
《Ceramics International》2017,43(6):5089-5094
A photosensitive sol-gel method was used to pattern the surface of ZrO2 film with a groove or a processus mastoideus structure. The surface roughness enhanced by the pattern structure had a strong effect on the ZrO2 film wettability. Compared to an un-patterned ZrO2 film, the patterned film showed a smaller static water contact angle (CA) and exhibited superhydrophilicity. Interestingly, the patterned ZrO2 film did not require the use of UV irradiation to induce the superhydrophilicity and exhibited an excellent anti-fogging behavior. The surface modification with a 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTCS) layer was found to induce the change in the wettability of the patterned ZrO2 films from superhydrophilicity to hydrophobicity/superhydrophobicity. The PFOTCS-modified ZrO2 film patterned with the processus mastoideus surface resulted in the highest CA value of 155° and the sliding angle (SA) value of about 7°, and almost did not change under UV irradiation or after being annealed below 350 °C. The surface patterning by using a photosensitive sol-gel method was proved to be a practical approach to fabricate the ZrO2 film with superhydrophilic/superhydrophobic properties.  相似文献   

11.
Complexation of chitosan in aqueous solutions by low molecular weight electrolytes is one of the simplest methods for the preparation of aqueous chitosan dispersions. In this work, the influence of storage time, sulfate concentration, method of preparation and surfactant content on some properties of the resultant chitosan dispersions (turbidity, viscosity and zeta potential) was analyzed. Turbidimetry was adequate to monitor the formation of particles, while viscometry was suitable to monitor changes in the dispersing phase. An analysis of the properties of these systems, mainly in terms of particle–particle and macromolecule–macromolecule interactions was carried out. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
This article examines several new methods for compounding nanocomposite materials by twin screw extrusion that use supercritical CO2 as a processing aid to produce more highly exfoliated polyolefin‐layered silicate nanocomposites than conventional melt intercalation. These methods varied the manner in which the plasticizing behavior of CO2 influences the surfactant of an organoclay, the compatibilizer, and the matrix during preparation of a polyolefin nanocomposite. The results have shown that targeting CO2 to the organoclay‐compatibilizer interface can improve the extent of intercalation. However, reduced performance was observed when CO2 was introduced predominantly to the matrix or neat organoclay. In general, the different techniques of addition for CO2 did bring about greater structural changes to the organoclay, but the stiffness of the resulting materials was lower than simply following a conventional melt intercalation approach. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
Supercritical CO2 extraction of flaxseed   总被引:2,自引:0,他引:2  
Extraction of flaxseed oil was performed with supercritical carbon dioxide (SC-CO2). To investigate the effects of pressure and temperature on the solubility of oil and oil yield, three isobaric (21, 35, and 55 MPa) and two isothermal (50 and 70°C) extraction conditions were selected. Although the maximal solubility of flaxseed oil, 11.3 mg oil/g CO2, was obtained at 70°C/55 MPa, the oil yield obtained after 3 h of extraction at this condition was only 25% (g oil/g seed×100), which represented 66% of the total available oil of the flaxseed. Lipid composition and FFA and tocol (tocopherol and tocotrienol) contents of the oils obtained by both SC-CO2 and petroleum ether extraction were determined. The α-linolenic acid content of the SC-CO2-extracted oil was higher than that obtained by solvent extraction.  相似文献   

14.
Polystyrene/nylon 1212 blends were prepared with supercritical CO2 as the substrate swelling agent and monomer/initiator carrier. Original nylon 1212 and blends were characterized with differential scanning calorimetry (DSC), polarizing microscopy, wide‐angle X‐ray diffraction, and scanning electron microscopy (SEM). A novel phenomenon, CO2‐induced epitaxy, was discovered, and its mechanism was deduced. Thermal analysis performed with DSC indicated that the polystyrene/nylon 1212 blends had thermal stability superior to that of virgin nylon 1212. The DSC and SEM measurements indicated that incorporated polystyrene could notably improve the mechanical performance of nylon 1212. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2023–2029, 2004  相似文献   

15.
The particle sizes of pharmaceutical substances are important for their bioavailability. Bioavailability can be improved by reducing the particle size of the drug. In this study, artemisinin was micronized by the rapid expansion of supercritical solutions (RESS). The particle size of the unprocessed white needle-like artemisinin particles was 30 to 1200 μm. The optimum micronization conditions are determined as follows: extraction temperature of 62 °C, extraction pressure of 25 MPa, precipitation temperature 45 °C and nozzle diameter of 1000 μm. Under the optimum conditions, micronized artemisinin with a (mean particle size) MPS of 550 nm is obtained. By analysis of variance (ANOVA), extraction temperature and pressure have significant effects on the MPS of the micronized artemisinin. The particle size of micronized artemisinin decreased with increasing extraction temperature and pressure. Moreover, the SEM, LC-MS, FTIR, DSC and XRD allowed the comparison between the crystalline initial state and the micronization particles obtained after the RESS process. The results showed that RESS process has not induced degradation of artemisinin and that processed artemisinin particles have lower crystallinity and melting point. The bulk density of artemisinin was determined before and after RESS process and the obtained results showed that it passes from an initial density of 0.554 to 0.128 g·cm(-3) after the processing. The decrease in bulk density of the micronized powder can increase the liquidity of drug particles when they are applied for medicinal preparations. These results suggest micronized powder of artemisinin can be of great potential in drug delivery systems.  相似文献   

16.
Rapid expansion of supercritical solutions (RESS) of poly(trifluoroethyl methacrylate), poly(TFEMA), was performed to produce ultrafine particles for spray coating application to improve the hydrophobicity of moisture-sensitive biodegradable materials. Carbon dioxide (CO2) was used as the RESS solvent. Thermoplastic starch/poly(butylene adipate-co-terephthalate) (TPS/PBAT, 60:40 wt/wt) blend was used as the coating substrate. The objectives of this work were to determine the capacity of the RESS process for coating TPS-based material with poly(TFEMA), and to investigate the effect of RESS parameters – i.e. pre-expansion pressure and temperature (Ppre, Tpre) and poly(TFEMA) concentration – on the surface morphology and hydrophobicity of the coated materials. It was found that RESS produced poly(TFEMA) particles precipitated onto the surface of the TPS/PBAT substrate, with particle sizes ranging from 30 nm to several microns, depending on processing parameters. Rapid expansion of fluoropolymer solutions (0.3–1.0 wt%) with Ppre of 331 bar initiated from unsaturated conditions produced nanoparticles with a narrow size distribution of ∼30–70 nm; whereas larger particles with broader size distributions and a lower degree of agglomeration were obtained when supersaturated solutions were expanded with Ppre of 172 bar, especially at Tpre (80 °C) – higher than the glass transition temperature (73 °C) of poly(TFEMA). The surface coverage by the fluoropolymer increased with increasing Ppre and poly(TFEMA) concentration, but decreased with increasing Tpre. In addition, the hydrophobicity of the coated substrate, determined by water contact angle and water vapor transmission rate measurements, increased with increasing surface coverage.  相似文献   

17.
The present work describes a simple process to synthesise HfB2 powder with sub-micron sized particles. Hafnium chloride and boric acid were used as the elemental sources whilst several carbon sources including sucrose, graphite, carbon black, carbon nanotubes and liquid and powder phenolic resin were used. The carbon sources were characterised using thermogravimetric analysis and transmission electron microscope. The mechanism by which the structure of the carbon source used, affects the size and morphology of the resultant HfB2 powder was studied; the HfB2 powders were characterised using X-ray diffraction and scanning and transmission electron microscopy. The powder synthesised using powder phenolic resin had a surface area of 21 m2 g−1 and a particle size distribution between 30 and 150 nm. This was sintered using SPS to a relative density of 94% of theoretical density (TD) at 2100 °C and 50 MPa pressure without the help of any sintering aids.  相似文献   

18.
《Ceramics International》2016,42(8):9621-9629
Decorative materials, including bamboo timber, have been proposed to exploit their superhydrophobic and self-cleaning properties, but a comprehensive appraisal of their environmental adaptability is still deficient. In this paper, a robust and durable superhydrophobic surface was formed on bamboo timber substrate through a process combining chemical solution deposition and chemical modification. The superhydrophobic surface resulted from micro-nanoscale binary-structured TiO2 films and the assembly of low-surface-energy fluorinated components, which exhibited a water contact angle of 163±1° and a sliding angle of 3±1°. The surface maintained superhydrophobicity after mechanical abrasion against 1500 mesh SiC sandpaper for 800 mm at the applied pressure of 1.2 kPa, indicating good mechanical stability. Moreover, the superhydrophobic surface exhibited good chemical stability against both acidic and basic aqueous solutions (e.g., simulated acid rain). After exposure to atmosphere for more than 180 days, the obtained surface still maintained a contact angle of 155±2° and a sliding angle of 6±2°, revealing good long-term stability. In addition, the as-prepared superhydrophobic surface exhibited almost complete wet self-cleaning of dirt particles with water droplets. It is believed that the method presented in this study can provide a straightforward and effective route to fabricate a large-area, mechanically robust, anticorrosive and self-cleaning superhydrophobic surface on woody materials for a great number of potential applications.  相似文献   

19.
介绍了超临界二氧化碳的有关知识,说明了它在萃取分离、反应分离、多相反应以及清除环境污染物中的重要作用。指出了其目前存在的问题并对其应用前景进行了展望。  相似文献   

20.
本文以Stober法制备的胶体SiO2粒子与粉体SiO2粒子结合的SiO2复合粒子在玻璃基底构建粗糙表面,以三乙氧基甲基硅烷(MTES)与正硅酸乙酯(TEOS)为前聚体制备的酸性有机硅低聚物作为粘接剂,使用偶联剂KH540与氟硅烷PFDT进行改性,通过喷涂法在玻璃基底上制备出SiO2复合粒子/酸性有机硅低聚物复合透明超疏水涂层,然后探究SiO2复合粒子、酸性有机硅低聚物、偶联剂KH540以及氟硅烷PFDT对复合涂层的影响。研究表明:当SiO2复合粒子由粒径为110 nm的胶体SiO2粒子与粒径为50 nm的粉体SiO2粒子两种粒子组成,SiO2复合粒子溶液与酸性有机硅稀释液的混合质量比为4:1,添加偶联剂KH540与氟硅烷PFDT的质量比为混合液的1%时,复合涂层在可见光波长范围内透光率可达88%,静态接触角能达155°,在800目砂纸上磨损60 cm后仍能保持超疏水性能,具有良好的自清洁性,为透明超疏水涂层的制备提供一种简便、低成本方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号