首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To date, soil salinity becomes a huge obstacle for food production worldwide since salt stress is one of the major factors limiting agricultural productivity. It is estimated that a significant loss of crops (20–50%) would be due to drought and salinity. To embark upon this harsh situation, numerous strategies such as plant breeding, plant genetic engineering, and a large variety of agricultural practices including the applications of plant growth-promoting rhizobacteria (PGPR) and seed biopriming technique have been developed to improve plant defense system against salt stress, resulting in higher crop yields to meet human’s increasing food demand in the future. In the present review, we update and discuss the advantageous roles of beneficial PGPR as green bioinoculants in mitigating the burden of high saline conditions on morphological parameters and on physio-biochemical attributes of plant crops via diverse mechanisms. In addition, the applications of PGPR as a useful tool in seed biopriming technique are also updated and discussed since this approach exhibits promising potentials in improving seed vigor, rapid seed germination, and seedling growth uniformity. Furthermore, the controversial findings regarding the fluctuation of antioxidants and osmolytes in PGPR-treated plants are also pointed out and discussed.  相似文献   

2.
Cold plasma (CP) technology is a technique used to change chemical and morphological characteristics of the surface of various materials. It is a newly emerging technology in agriculture used for seed treatment with the potential of improving seed germination and yield of crops. Wheat seeds were treated with glow (direct) or afterglow (indirect) low-pressure radio-frequency oxygen plasma. Chemical characteristics of the seed surface were evaluated by XPS and FTIR analysis, changes in the morphology of the seed pericarp were analysed by SEM and AFM, and physiological characteristics of the seedlings were determined by germination tests, growth studies, and the evaluation of α-amylase activity. Changes in seed wettability were also studied, mainly in correlation with functionalization of the seed surface and oxidation of lipid molecules. Only prolonged direct CP treatment resulted in altered morphology of the seed pericarp and increased its roughness. The degree of functionalization is more evident in direct compared to indirect CP treatment. CP treatment slowed the germination of seedlings, decreased the activity of α-amylase in seeds after imbibition, and affected the root system of seedlings.  相似文献   

3.
4.
Soybean (Glycine max (L.) Merr.) is among the most valuable crops based on its nutritious seed protein and oil. Protein quality, evaluated as the ratio of glycinin (11S) to β-conglycinin (7S), can play a role in food and feed quality. To help uncover the underlying differences between high and low protein soybean varieties, we performed differential expression analysis on high and low total protein soybean varieties and high and low 11S soybean varieties grown in four locations across Eastern and Western Canada over three years (2018–2020). Simultaneously, ten individual differential expression datasets for high vs. low total protein soybeans and ten individual differential expression datasets for high vs. low 11S soybeans were assessed, for a total of 20 datasets. The top 15 most upregulated and the 15 most downregulated genes were extracted from each differential expression dataset and cross-examination was conducted to create shortlists of the most consistently differentially expressed genes. Shortlisted genes were assessed for gene ontology to gain a global appreciation of the commonly differentially expressed genes. Genes with roles in the lipid metabolic pathway and carbohydrate metabolic pathway were differentially expressed in high total protein and high 11S soybeans in comparison to their low total protein and low 11S counterparts. Expression differences were consistent between East and West locations with the exception of one, Glyma.03G054100. These data are important for uncovering the genes and biological pathways responsible for the difference in seed protein between high and low total protein or 11S cultivars.  相似文献   

5.
Pearl millet is an important crop of the arid and semi-arid ecologies to sustain food and fodder production. The greater tolerance to drought stress attracts us to examine its cellular and molecular mechanisms via functional genomics approaches to augment the grain yield. Here, we studied the drought response of 48 inbreds representing four different maturity groups at the flowering stage. A set of 74 drought-responsive genes were separated into five major phylogenic groups belonging to eight functional groups, namely ABA signaling, hormone signaling, ion and osmotic homeostasis, TF-mediated regulation, molecular adaptation, signal transduction, physiological adaptation, detoxification, which were comprehensively studied. Among the conserved motifs of the drought-responsive genes, the protein kinases and MYB domain proteins were the most conserved ones. Comparative in-silico analysis of the drought genes across millet crops showed foxtail millet had most orthologs with pearl millet. Of 698 haplotypes identified across millet crops, MyC2 and Myb4 had maximum haplotypes. The protein–protein interaction network identified ABI2, P5CS, CDPK, DREB, MYB, and CYP707A3 as major hub genes. The expression assay showed the presence of common as well as unique drought-responsive genes across maturity groups. Drought tolerant genotypes in respective maturity groups were identified from the expression pattern of genes. Among several gene families, ABA signaling, TFs, and signaling proteins were the prospective contributors to drought tolerance across maturity groups. The functionally validated genes could be used as promising candidates in backcross breeding, genomic selection, and gene-editing schemes in pearl millet and other millet crops to increase the yield in drought-prone arid and semi-arid ecologies.  相似文献   

6.
7.
An excellent root system is responsible for crops with high nitrogen-use efficiency (NUE). The current study evaluated the natural variations in 13 root- and biomass-related traits under a low nitrogen (LN) treatment in a rapeseed association panel. The studied traits exhibited significant phenotypic differences with heritabilities ranging from 0.53 to 0.66, and most of the traits showed significant correlations with each other. The genome-wide association study (GWAS) found 51 significant and 30 suggestive trait–SNP associations that integrated into 14 valid quantitative trait loci (QTL) clusters and explained 5.7–21.2% phenotypic variance. In addition, RNA sequencing was performed at two time points to examine the differential expression of genes (DEGs) between high and low NUE lines. In total, 245, 540, and 399 DEGs were identified as LN stress-specific, high nitrogen (HN) condition-specific, and HNLN common DEGs, respectively. An integrated analysis of GWAS, weighted gene co-expression network, and DEGs revealed 16 genes involved in rapeseed root development under LN stress. Previous studies have reported that the homologs of seven out of sixteen potential genes control root growth and NUE. These findings revealed the genetic basis underlying nitrogen stress and provided worthwhile SNPs/genes information for the genetic improvement of NUE in rapeseed.  相似文献   

8.
9.
Real-time quantitative PCR (RT-qPCR) is a reliable and widely used method for gene expression analysis. The accuracy of the determination of a target gene expression level by RT-qPCR demands the use of appropriate reference genes to normalize the mRNA levels among different samples. However, suitable reference genes for RT-qPCR have not been identified in Sacha inchi (Plukenetia volubilis), a promising oilseed crop known for its polyunsaturated fatty acid (PUFA)-rich seeds. In this study, using RT-qPCR, twelve candidate reference genes were examined in seedlings and adult plants, during flower and seed development and for the entire growth cycle of Sacha inchi. Four statistical algorithms (delta cycle threshold (ΔCt), BestKeeper, geNorm, and NormFinder) were used to assess the expression stabilities of the candidate genes. The results showed that ubiquitin-conjugating enzyme (UCE), actin (ACT) and phospholipase A22 (PLA) were the most stable genes in Sacha inchi seedlings. For roots, stems, leaves, flowers, and seeds from adult plants, 30S ribosomal protein S13 (RPS13), cyclophilin (CYC) and elongation factor-1alpha (EF1α) were recommended as reference genes for RT-qPCR. During the development of reproductive organs, PLA, ACT and UCE were the optimal reference genes for flower development, whereas UCE, RPS13 and RNA polymerase II subunit (RPII) were optimal for seed development. Considering the entire growth cycle of Sacha inchi, UCE, ACT and EF1α were sufficient for the purpose of normalization. Our results provide useful guidelines for the selection of reliable reference genes for the normalization of RT-qPCR data for seedlings and adult plants, for reproductive organs, and for the entire growth cycle of Sacha inchi.  相似文献   

10.
11.
12.
Oilseed crops of the Cruciferae are widely adapted and are of particular importance to countries in the northern latitudes. Cruciferous seed oils from the crops, rapeseed, mustard, Camelina, oilseed radish and Crambe, enter edible or industrial markets, or both. The oil-seed meal can be used either as a high protein feed supplement or as an organic fertilizer. The spring and winter forms of the two species of rapeseed,Brassica napus andB. campestris, are commercially the most important. Advances in crop management and plant breeding have resulted in a 40% to 50% increase in seed yield over the past 25 years. In the next 10 to 15 years, application of newer plant-breeding techniques will result in varieties even higher in yield and seed with improved oil and meal quality. Some of the quality improvements will be new patterns in fatty acid composition, higher oil and protein content, lower fiber content, and removal of the undesirable glucosinolate compounds from the meal. The mustard cropsBrassica juncea andB. hirta are important condiment crops which have considerable potential as edible oil sources. Oilseed radish,Raphanus sativus, yields significantly less seed and oil than other cruciferous oil crops but its oil, which contains a low level of erucic acid (3.7%) and a relatively high content of 16-carbon fatty acids (9.3%), may be useful in blending with normal or zero erucic acid rapeseed oils.Camelina sativa or false flax has many desirable agronomic characteristics but the oil of camelina seed contains too high a level of linolenic acid (36%) to penetrate the edible oil market and too low to compete industrially with linseed oil.Crambe abyssinica andC. hispanica are potentially important producers of high erucic acid industrial oils. Factors limiting Crambe development are the high cost of seed transportation due to the high volume to weight ratio of the threshed seed and the need for extra seed processing steps to render the meal suitable as a high protein feed supplement for livestock and poultry. One of 9 papers presented at the Symposium, “Cruciferous Oilseeds,” ISF-AOCS World Congress, Chicago, September 1970. Contribution No. 425, Research Station, Canada Department of Agriculture, Saskatoon, Saskatchewan, Canada.  相似文献   

13.
Yields in intensive rice (Oryza sativa L.) -based rotations in Asia are stagnating or declining because of decreasing nutrient availability and depletion of soil nutrient reserves. In the rape (Brassica napus L.)–rice–rice cropping rotation of southeast China, where boron (B) deficiency is widespread and B fertiliser is needed to correct it, our objective was to evaluate the risks of fertiliser-induced B toxicity in oilseed rape and in rice. Response of oilseed rape to B fertiliser application at rates up to 6.6 kg B ha-1 was studied in seven field experiments on three contrasting soils of Zhejiang province, alluvial, red and blue-purple soils. The effects of up to 3.3 kg B ha-1 in 1 year, 6.6 kg B ha-1 in 2 years or 9.9 kg B ha-1 in 3 years were studied on oilseed rape and the one or two rice crops grown immediately after rape in each annual crop rotation. Soils varied in initial hot CaCl2-extractable B in the 0–15-cm layer from 0.24 to 0.99 mg kg-1. At the stem elongation stage of oilseed rape, 3.3 kg B ha-1 depressed shoot dry matter on soils with low clay and organic matter content. However, the subsequent effects of high fertiliser B on seed yield were minimal even at 6.6 kg B ha-1. Moreover, the application of a total of 6.6 or 9.9 kg B ha-1 as successive annual applications of 3.3 kg B ha-1 to oilseed rape generally had no negative effect on seed yield of oilseed rape. The single exception was on a sandy alluvial soil where a total of 6.6 kg B ha-1 in 2 years slightly depressed seed yield of oilseed rape. Grain yields of rice crops grown in rotation after oilseed rape were unaffected by B applications up to 6.6 kg ha-1. The minimal effects of a total of 6.6 kg B ha-1 applied over 2 years on seed yield were consistent with the modest increase in hot CaCl2-extractable B levels. It is concluded that there is limited risk of B toxicity from the use of borax fertiliser at up to 4–8 times recommended rates in rape–rice cropping rotations in southeast China. The low risk of B toxicity can be attributed to the relatively high B removal in harvested seed, grain and stubble, the redistribution of fertiliser B by leaching in the 0–60 cm layer and to B sorption.  相似文献   

14.
Rapeseed (Brassica napus L.) is an important oil crop and a major source of tocopherols, also known as vitamin E, in human nutrition. Enhancing the quality and composition of fatty acids (FAs) and tocopherols in seeds has long been a target for rapeseed breeding. The gene γ-Tocopherol methyltransferase (γ-TMT) encodes an enzyme catalysing the conversion of γ-tocopherol to α-tocopherol, which has the highest biological activity. However, the genetic basis of γ-TMT in B. napus seeds remains unclear. In the present study, BnaC02.TMT.a, one paralogue of Brassica napus γ-TMT, was isolated from the B. napus cultivar “Zhongshuang11” by nested PCR, and two homozygous transgenic overexpression lines were further characterised. Our results demonstrated that the overexpression of BnaC02.TMT.a mediated an increase in the α- and total tocopherol content in transgenic B. napus seeds. Interestingly, the FA composition was also altered in the transgenic plants; a reduction in the levels of oleic acid and an increase in the levels of linoleic acid and linolenic acid were observed. Consistently, BnaC02.TMT.a promoted the expression of BnFAD2 and BnFAD3, which are involved in the biosynthesis of polyunsaturated fatty acids during seed development. In addition, BnaC02.TMT.a enhanced the tolerance to salt stress by scavenging reactive oxygen species (ROS) during seed germination in B. napus. Our results suggest that BnaC02.TMT.a could affect the tocopherol content and FA composition and play a positive role in regulating the rapeseed response to salt stress by modulating the ROS scavenging system. This study broadens our understanding of the function of the Bnγ-TMT gene and provides a novel strategy for genetic engineering in rapeseed breeding.  相似文献   

15.
A Contribution to the Definition of Breeding Goals for Rapeseed The most important goal in the breeding of rapeseed for kernel production is the high seed yield. Besides the many so-called yield improving and yield securing characteristics (e.g. winterhardiness, disease resistance) and optimum agronomical techniques (e. g. sufficient fertilization, weed and insect control) the components of yield such as thousand kernel weight, number of seeds per pod, and number of pods per unit (m2) characterize the genetically determined performance of a rapeseed variety. Thousand kernel weight and number of seeds per pod are negatively correlated with each other. But this relationship is not so strong that the increase in yield by an increased number of seeds per pod is diminished by a corresponding decrease of the thousand kernel weight. It was shown that by selection for higher number of seeds per pod, higher seed yields per pod should be attainable. For the number of pods per unit of land (m2) there was no relation with the number of seeds per pod nor with thousand kernel weight. Therefore, this character is of special bearing on the improvement of seed yield of rapeseed varieties. For a sufficiently reliable estimate of the characters number of seed per pod and number of pods per unit of land (m2), better methods have to be developed in order to carry out selections for higher seed yield in the future more systematically and by this more successfully.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号