首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neuropeptide substance P (SP) mediates neurogenic inflammation and pain and contributes to atopic dermatitis in mice through the activation of mast cells (MCs) via Mas-related G protein-coupled receptor (GPCR)-B2 (MrgprB2, human ortholog MRGPRX2). In addition to G proteins, certain MRGPRX2 agonists activate an additional signaling pathway that involves the recruitment of β-arrestins, which contributes to receptor internalization and desensitization (balanced agonists). We found that SP caused β-arrestin recruitment, MRGPRX2 internalization, and desensitization. These responses were independent of G proteins, indicating that SP serves as a balanced agonist for MRGPRX2. A tyrosine residue in the highly conserved NPxxY motif contributes to the activation and internalization of many GPCRs. We have previously shown that Tyr279 of MRGPRX2 is essential for G protein-mediated signaling and degranulation. To assess its role in β-arrestin-mediated MRGPRX2 regulation, we replaced Tyr279 in the NPxxY motif of MRGPRX2 with Ala (Y279A). Surprisingly, we found that, unlike the wild-type receptor, Y279A mutant of MRGPRX2 was resistant to SP-induced β-arrestin recruitment and internalization. This study reveals the novel findings that activation of MRGPRX2 by SP is regulated by β-arrestins and that a highly conserved tyrosine residue within MRGPRX2’s NPxxY motif contributes to both G protein- and β-arrestin-mediated responses.  相似文献   

2.
Programmed cell death 1 (PD-1) and its ligands PD-L1 and PD-L2 are receptors that act in co-stimulatory and coinhibitory immune responses. Signaling the PD-1/PD-L1 or PD-L2 pathway is essential to regulate the inflammatory responses to infections, autoimmunity, and allergies, and it has been extensively studied in cancer. Allergic diseases include asthma, rhinoconjunctivitis, atopic dermatitis, drug allergy, and anaphylaxis. These overactive immune responses involve IgE-dependent activation and increased CD4+ T helper type 2 (Th2) lymphocytes. Recent studies have shown that PD-L1 and PD-L2 act to regulate T-cell activation and function. However, the main role of PD-1 and its ligands is to balance the immune response; however, the inflammatory process of allergic diseases is poorly understood. These immune checkpoint molecules can function as a brake or a kick-start to regulate the adaptive immune response. These findings suggest that PD-1 and its ligands may be a key factor in studying the exaggerated response in hypersensitivity reactions in allergies. This review summarizes the current understanding of the role of PD-1 and PD-L1 and PD-L2 pathway regulation in allergic diseases and how this immunomodulatory pathway is currently being targeted to develop novel therapeutic immunotherapy.  相似文献   

3.
The non-selective cation channel TRPA1 is best known as a broadly-tuned sensor expressed in nociceptive neurons, where it plays key functions in chemo-, thermo-, and mechano-sensing. However, in this review we illustrate how this channel is expressed also in cells of the immune system. TRPA1 has been detected, mainly with biochemical techniques, in eosinophils, mast cells, macrophages, dendritic cells, T cells, and B cells, but not in neutrophils. Functional measurements, in contrast, remain very scarce. No studies have been reported in basophils and NK cells. TRPA1 in immune cells has been linked to arthritis (neutrophils), anaphylaxis and atopic dermatitis (mast cells), atherosclerosis, renal injury, cardiac hypertrophy and inflammatory bowel disease (macrophages), and colitis (T cells). The contribution of TRPA1 to immunity is dual: as detector of cell stress, tissue injury, and exogenous noxious stimuli it leads to defensive responses, but in conditions of aberrant regulation it contributes to the exacerbation of inflammatory conditions. Future studies should aim at characterizing the functional properties of TRPA1 in immune cells, an essential step in understanding its roles in inflammation and its potential as therapeutic target.  相似文献   

4.
The innate and adaptive immune systems play an essential role in host defense against pathogens. Various signal transduction pathways monitor and balance the immune system since an imbalance may promote pathological states such as allergy, inflammation, and cancer. Mast cells have a central role in the regulation of the innate/adaptive immune system and are involved in the pathogenesis of many inflammatory and allergic diseases by releasing inflammatory mediators such as histamines, proteases, chemotactic factors, and cytokines. Although various signaling pathways are associated with mast cell activation, our discovery and characterization of the pLysRS-Ap4A signaling pathway in these cells provided an additional important step towards a full understanding of the intracellular mechanisms involved in mast cell activation. In the present review, we will discuss in depth this signaling pathway’s contribution to host defense and the pathological state.  相似文献   

5.
Mast cells are major effector cells in eliciting allergic responses. They also play a significant role in establishing innate and adaptive immune responses, as well as in modulating tumor growth. Mast cells can be activated upon engagement of the high-affinity receptor FcεRI with specific IgE to multivalent antigens or in response to several FcεRI-independent mechanisms. Upon stimulation, mast cells secrete various preformed and newly synthesized mediators. Emerging evidence indicates their ability to be a rich source of secreted extracellular vesicles (EVs), including exosomes and microvesicles, which convey biological functions. Mast cell-derived EVs can interact with and affect other cells located nearby or at distant sites and modulate inflammation, allergic response, and tumor progression. Mast cells are also affected by EVs derived from other cells in the immune system or in the tumor microenvironment, which may activate mast cells to release different mediators. In this review, we summarize the latest data regarding the ability of mast cells to release or respond to EVs and their role in allergic responses, inflammation, and tumor progression. Understanding the release, composition, and uptake of EVs by cells located near to or at sites distant from mast cells in a variety of clinical conditions, such as allergic inflammation, mastocytosis, and lung cancer will contribute to developing novel therapeutic approaches.  相似文献   

6.
7.
Mast cells (MC) are a key effector cell in multiple types of immune responses, including atopic conditions. Allergic diseases have been steadily rising across the globe, creating a growing public health problem. IgE-mediated activation of MCs leads to the release of potent mediators that can have dire clinical consequences. Current therapeutic options to inhibit MC activation and degranulation are limited; thus, a better understanding of the mechanisms that regulate MC effector functions in allergic inflammation are necessary in order to develop effective treatment options with minimal side effects. Several cytokines have been identified that play multifaceted roles in regulating MC activation, including TGFβ, IL-10, and IL-33, and others that appear to serve primarily anti-inflammatory functions, including IL-35 and IL-37. Here, we review the literature examining cytokines that regulate MC-mediated allergic immune responses.  相似文献   

8.
The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, acts as ‘polymodal cellular sensor’ on primary sensory neurons where it mediates the peripheral and central processing of pain, itch, and thermal sensation. However, the TRPA1 expression extends far beyond the sensory nerves. In recent years, much attention has been paid to its expression and function in non-neuronal cell types including skin cells, such as keratinocytes, melanocytes, mast cells, dendritic cells, and endothelial cells. TRPA1 seems critically involved in a series of physiological skin functions, including formation and maintenance of physico-chemical skin barriers, skin cells, and tissue growth and differentiation. TRPA1 appears to be implicated in mechanistic processes in various immunological inflammatory diseases and cancers of the skin, such as atopic and allergic contact dermatitis, psoriasis, bullous pemphigoid, cutaneous T-cell lymphoma, and melanoma. Here, we report recent findings on the implication of TRPA1 in skin physiology and pathophysiology. The potential use of TRPA1 antagonists in the treatment of inflammatory and immunological skin disorders will be also addressed.  相似文献   

9.
Mast cells (MCs) play important roles in normal immune responses and pathological states. The location of MCs on the boundaries between tissues and the external environment, including gut mucosal surfaces, lungs, skin, and around blood vessels, suggests a multitude of immunological functions. Thus, MCs are pivotal for host defense against different antigens, including allergens and microbial pathogens. MCs can produce and respond to physiological mediators and chemokines to modulate inflammation. As long-lived, tissue-resident cells, MCs indeed mediate acute inflammatory responses such as those evident in allergic reactions. Furthermore, MCs participate in innate and adaptive immune responses to bacteria, viruses, fungi, and parasites. The control of MC activation or stabilization is a powerful tool in regulating tissue homeostasis and pathogen clearance. Moreover, MCs contribute to maintaining the homeostatic equilibrium between host and resident microbiota, and they engage in crosstalk between the resident and recruited hematopoietic cells. In this review, we provide a comprehensive overview of the functions of MCs in health and disease. Further, we discuss how mouse models of MC deficiency have become useful tools for establishing MCs as a potential cellular target for treating inflammatory disorders.  相似文献   

10.
Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is unavailable. We have previously established novel murine models of metal allergy and found accumulation of both metal-specific T cells and natural killer (NK) T cells in the inflamed skin. In our novel models of metal allergy, skin hypersensitivity responses were induced through repeated sensitizations by administration of metal chloride and lipopolysaccharide into the mouse groin followed by metal chloride challenge in the footpad. These models enabled us to investigate the precise mechanisms of the immune responses of metal allergy in the inflamed skin. In this review, we summarize the immune responses in several murine models of metal allergy and describe which antigen-specific responses occur in the inflamed skin during allergic contact dermatitis in terms of the T cell receptor. In addition, we consider the immune regulation of accumulated NK T cells in metal ion–induced allergic contact dermatitis.  相似文献   

11.
12.
The activation and degranulation of immune cells play a pivotal role in allergic inflammation, a pathological condition that includes anaphylaxis, pruritus, and allergic march-related diseases. In this study, trifuhalol A, a phlorotannin isolated from Agarum cribrosum, inhibited the degranulation of immune cells and the biosynthesis of IL-33 and IgE in differentiated B cells and keratinocytes, respectively. Additionally, trifuhalol A suppressed the IL-33 and IgE-mediated activation of RBL-2H3 cells through the regulation of the TAK1 and MK2 pathways. Hence, the effect of trifuhalol A on allergic inflammation was evaluated using a Compound 48/80-induced systemic anaphylaxis mouse model and a house dust mite (HDM)-induced atopic dermatitis (AD) mouse model. Trifuhalol A alleviated anaphylactic death and pruritus, which appeared as an early-phase reaction to allergic inflammation in the Compound 48/80-induced systemic anaphylaxis model. In addition, trifuhalol A improved symptoms such as itching, edema, erythema, and hyperkeratinization in HDM-induced AD mice as a late-phase reaction. Moreover, the expression of IL-33 and thymic stromal lymphopoietin, inflammatory cytokines secreted from activated keratinocytes, was significantly reduced by trifuhalol A administration, resulting in the reduced infiltration of immune cells into the skin and a reduction in the blood levels of IgE and IL-4. In summarizing the above results, these results confirm that trifuhalol A is a potential therapeutic candidate for the regulation of allergic inflammation.  相似文献   

13.
Mast cells (MCs) play critical roles in Th2 immune responses, including the defense against parasitic infections and the initiation of type I allergic reactions. In addition, MCs are involved in several immune-related responses, including those in bacterial infections, autoimmune diseases, inflammatory bowel diseases, cancers, allograft rejections, and lifestyle diseases. Whereas antigen-specific IgE is a well-known activator of MCs, which express FcεRI on the cell surface, other receptors for cytokines, growth factors, pathogen-associated molecular patterns, and damage-associated molecular patterns also function as triggers of MC stimulation, resulting in the release of chemical mediators, eicosanoids, and various cytokines. In this review, we focus on the role of interleukin (IL)-10, an anti-inflammatory cytokine, in MC-mediated immune responses, in which MCs play roles not only as initiators of the immune response but also as suppressors of excessive inflammation. IL-10 exhibits diverse effects on the proliferation, differentiation, survival, and activation of MCs in vivo and in vitro. Furthermore, IL-10 derived from MCs exerts beneficial and detrimental effects on the maintenance of tissue homeostasis and in several immune-related diseases including contact hypersensitivity, auto-immune diseases, and infections. This review introduces the effects of IL-10 on various events in MCs, and the roles of MCs in IL-10-related immune responses and as a source of IL-10.  相似文献   

14.
Our understanding on the immunological roles of pathogen recognition in innate immunity has vastly increased over the past 20 years. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLR) are cytosolic pattern recognition receptors (PRR) that are responsible for sensing microbial motifs and endogenous damage signals in mammalian cytosol for immune surveillance and host defense. The accumulating discoveries on these NLR sensors in allergic diseases suggest that the pathogenesis of allergic diseases may not be confined to the adaptive immune response. Therapy targeting NLR in murine models also shields light on its potential in the treatment of allergies in man. In this review, we herein summarize the recent understanding of the role of NLR sensors and their molecular mechanisms involved in allergic inflammation, including atopic dermatitis and allergic asthma.  相似文献   

15.
The SWItch (SWI)3-related gene (SRG3) product, a SWI/Sucrose Non-Fermenting (SNF) chromatin remodeling subunit, plays a critical role in regulating immune responses. We have previously shown that ubiquitous SRG3 overexpression attenuates the progression of Th1/Th17-mediated experimental autoimmune encephalomyelitis. However, it is unclear whether SRG3 overexpression can affect the pathogenesis of inflammatory skin diseases such as atopic dermatitis (AD), a Th2-type immune disorder. Thus, to elucidate the effects of SRG3 overexpression in AD development, we bred NC/Nga (NC) mice with transgenic mice where SRG3 expression is driven by the β-actin promoter (SRG3β-actin mice). We found that SRG3β-actin NC mice exhibit increased AD development (e.g., a higher clinical score, immunoglobulin E (IgE) hyperproduction, and an increased number of infiltrated mast cells and basophils in skin lesions) compared with wild-type NC mice. Moreover, the severity of AD pathogenesis in SRG3β-actin NC mice correlated with expansion of interleukin 4 (IL4)-producing basophils and mast cells, and M2 macrophages. Furthermore, this accelerated AD development is strongly associated with Treg cell suppression. Collectively, our results have identified that modulation of SRG3 function can be applied as one of the options to control AD pathogenesis.  相似文献   

16.
Asthma, which is a chronic inflammatory disease of the airways, is usually caused by allergens in which various structures and immune cells are involved. Ephedra sinica, the most commonly used Chinese medicine, has significant clinical effects on asthma, but its components are complex and the mechanism of action has not been fully elucidated. Among its components, we identified an amide alkaloid (EB-A) and investigated its anti-asthmatic activity and the underlying mechanisms. In this study, we replicated an OVA-sensitized/challenged allergic asthma mouse model, and divided the mice into a model (OVA) group, positive drug (Y, 0.5 mg/kg/day) group, and EB-A treatment with low (Low, 10 mg/kg/day) and high dose (High, 20 mg/kg/day) groups. Asthma-related features were analyzed through the airway hyperresponsiveness (AHR), cough and wheeze indexes, allergen-specific IgE, prostaglandin D2 (PDG2), and lung histology in mice. The levels of apoptosis and reactive oxygen species (ROS) in the primary lung cells, cytokines in the serum and broncho-alveolar lavage fluid (BALF), and proteinase-activated receptor-2 (PAR2) pathway activation in the lung tissue were measured to evaluate the inflammatory injury and lung epithelial barrier damage in the mice. Dendritic cell (DC) maturation and mast cell (MC) activation were verified in vitro and in vivo. Furthermore, the effect of a PAR2 activation in lung epithelial cells on the maturation of DCs was evaluated by the co-culture system of (human bronchial epithelial cell lines) 16HBE and bone marrow-derived dendritic cells (BMDCs). The results showed that EB-A inhibited the typical asthmatic phenotypes, as well as lung injury and inflammation, MC activation and degranulation, and DC maturation in the OVA-sensitized/challenged BALB/c mice. In addition, EB-A inhibited the expression of PAR2 in the lung epithelial cells and significantly interfered with the maturation of DCs after inhibiting PAR2. Taken together, our study firstly demonstrated that EB-A could ameliorate OVA-induced allergic asthma by inhibiting MC activation and DC maturation, and the molecular mechanism of EB-A’s anti-asthmatic activity might be mediated by inhibiting PAR2. Our data provide a molecular justification for the use of EB-A in the treatment of allergic asthma.  相似文献   

17.
Mast cells are involved in allergic and other inflammatory diseases. The polyphenol resveratrol is known for its anti-inflammatory properties and may be used as nutraceutical in mast cell associated diseases. We analyzed the effect of resveratrol on mast cells in vivo in ovalbumin-induced allergic enteritis as well as experimental colitis in IL-10−/− mice which received resveratrol via drinking water. Treatment with resveratrol prevented the increase in mast cells in both allergic enteritis and chronic colitis in duodenum as well as in colon. Further, it delayed the onset of diseases symptoms and ameliorated diseases associated parameters such as tissue damage as well as inflammatory cell infiltration in affected colon sections. In addition to the findings in vivo, resveratrol inhibited IgE-dependent degranulation and expression of pro-inflammatory cytokines such as TNF-α in IgE/DNP-activated as well as in LPS-activated bone marrow-derived mast cells. These results indicate that resveratrol may be considered as an anti-allergic and anti-inflammatory plant-derived component for the prevention or treatment of mast cell-associated disorders of the gastrointestinal tract.  相似文献   

18.
The metabolism of tryptophan is intimately associated with the differential regulation of diverse physiological processes, including in the regulation of responses to severe acute respiratory syndrome, coronavirus-2 (SARS-CoV-2) infection that underpins the COVID-19 pandemic. Two important products of tryptophan metabolism, viz kynurenine and interleukin (IL)4-inducible1 (IL41)-driven indole 3 pyruvate (I3P), activate the aryl hydrocarbon receptor (AhR), thereby altering the nature of immune responses to SARS-CoV-2 infection. AhR activation dysregulates the initial pro-inflammatory cytokines production driven by neutrophils, macrophages, and mast cells, whilst AhR activation suppresses the endogenous antiviral responses of natural killer cells and CD8+ T cells. Such immune responses become further dysregulated by the increased and prolonged pro-inflammatory cytokine suppression of pineal melatonin production coupled to increased gut dysbiosis and gut permeability. The suppression of pineal melatonin and gut microbiome-derived butyrate, coupled to an increase in circulating lipopolysaccharide (LPS) further dysregulates the immune response. The AhR mediates its effects via alterations in the regulation of mitochondrial function in immune cells. The increased risk of severe/fatal SARS-CoV-2 infection by high risk conditions, such as elderly age, obesity, and diabetes are mediated by these conditions having expression levels of melatonin, AhR, butyrate, and LPS that are closer to those driven by SARS-CoV-2 infection. This has a number of future research and treatment implications, including the utilization of melatonin and nutraceuticals that inhibit the AhR, including the polyphenols, epigallocatechin gallate (EGCG), and resveratrol.  相似文献   

19.
The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, is primarily localized in a subpopulation of primary sensory neurons of the trigeminal, vagal, and dorsal root ganglia, where its activation mediates neurogenic inflammatory responses. TRPA1 expression in resident tissue cells, inflammatory, and immune cells, through the indirect modulation of a large series of intracellular pathways, orchestrates a range of cellular processes, such as cytokine production, cell differentiation, and cytotoxicity. Therefore, the TRPA1 pathway has been proposed as a protective mechanism to detect and respond to harmful agents in various pathological conditions, including several inflammatory diseases. Specific attention has been paid to TRPA1 contribution to the transition of inflammation and immune responses from an early defensive response to a chronic pathological condition. In this view, TRPA1 antagonists may be regarded as beneficial tools for the treatment of inflammatory conditions.  相似文献   

20.
The preparation of dendritic cells (DCs) for adoptive cellular immunotherapy (ACI) requires the maturation of ex vivo-produced immature(i) DCs. This maturation ensures that the antigen presentation triggers an immune response towards the antigen-expressing cells. Although there is a large number of maturation agents capable of inducing strong DC maturation, there is still only a very limited number of these agents approved for use in the production of DCs for ACI. In seeking novel DC maturation agents, we used differentially activated human mast cell (MC) line LAD2 as a cellular adjuvant to elicit or modulate the maturation of ex vivo-produced monocyte-derived iDCs. We found that co-culture of iDCs with differentially activated LAD2 MCs in serum-containing media significantly modulated polyinosinic:polycytidylic acid (poly I:C)-elicited DC maturation as determined through the surface expression of the maturation markers CD80, CD83, CD86, and human leukocyte antigen(HLA)-DR. Once iDCs were generated in serum-free conditions, they became refractory to the maturation with poly I:C, and the LAD2 MC modulatory potential was minimized. However, the maturation-refractory phenotype of the serum-free generated iDCs was largely overcome by co-culture with thapsigargin-stimulated LAD2 MCs. Our data suggest that differentially stimulated mast cells could be novel and highly potent cellular adjuvants for the maturation of DCs for ACI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号