首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Design and implementation of a new electrodynamic ion funnel   总被引:1,自引:0,他引:1  
A new electrodynamic (rf) ion funnel has been developed and evaluated for use in the interface regions (at approximately 1-10 Torr) of atmospheric pressure ion sources (e.g., electrospray ionization (ESI) for mass spectrometry). The ion funnel consists of a ring electrode ion guide with decreasing i.d. and with a superimposed dc potential gradient along the ring stack. The thicknesses of the ring electrodes and the spacings between them were reduced to 0.5 mm from 1.59 mm compared to those used for previous designs. The new ion funnel displays a significant improvement in low-mass transmission (m/z >200) and sensitivity compared to previous designs. The transmission efficiencies for electrosprayed peptides and proteins (ranging in mass from 200 to 17,000 Da) were typically 50-60% of total incoming currents from a heated capillary inlet. The transmitted ion currents were a factor of 30-56 greater than those of the standard interface for peptide samples and a factor of 18-22 greater than those for protein samples. The sensitivity gains realized at the MS detector were somewhat lower, possibly due to space charge effects in the octapole ion beam guide following the ion funnel. The improved ion transmission properties result primarily from the use of reduced spacings between ring electrodes. We also show that the ion funnel can be operated in two different modes, one using low-rf-amplitude scans, allowing fragile noncovalent complexes (as well as generally undesired adducts) to be transmitted, and the other using high-rf-amplitude scans, providing greater collisional activation and more effective adduct removal (or the dissociation of lower m/z species).  相似文献   

2.
A new atmospheric pressure ionization mass spectrometer (API-MS) interface has been developed to allow the control of ion transmission through the first vacuum stage of the mass spectrometer. The described interface uses a dual-heated capillary and a dual-inlet ion funnel design. Two electrosprays, aligned with the dual-capillary inlet, are used to introduce ions from different solutions independently into the MS. The initial design was specifically aimed at developing a method for the controlled introduction of calibrant ions in highly accurate mass measurements using Fourier transform ion cyclotron resonance mass spectrometer (FTICR). The dual-channel ion funnel has different inlet diameters that are aligned with the dual capillaries. The large diameter main channel of the ion funnel is used for analyte introduction to provide optimum ion transmission. The second, smaller diameter channel inlet includes a jet disrupter in the ion funnel to modulate the ion transmission through the channel. The two inlet channels converge into a single-channel ion funnel where ions from both channels are mixed, focused, and transmitted to the mass analyzer. Both theoretical simulations and experimental results show that the transmission of different m/z species in the small diameter channel of the ion funnel can be effectively modulated by varying the bias voltage on the jet disrupter. Both static and dynamic modulations of ion transmission are demonstrated experimentally by applying either a constant DC or a square waveform voltage to the jet disrupter. High ion transmission efficiency, similar to the standard single-channel ion funnel, is maintained in the main analyte channel inlet of the ion funnel over a broad m/z range with negligible "cross talk" between the two ion funnel inlet channels. Several possible applications of the new interface (e.g., for high-accuracy MS analysis of complex biological samples) are described.  相似文献   

3.
A nanoelectrospray ionization mass spectrometry (ESI-MS) source and interface has been designed that enables efficient ion production and transmission in a 30 Torr pressure environment using solvents compatible with typical reversed-phase liquid chromatography (RPLC) separations. In this design, the electrospray emitter is located inside the mass spectrometer in the same region as an electrodynamic ion funnel. This avoids the use of a conductance limiting ion inlet, as required by a conventional atmospheric pressure ESI source, and allows more efficient ion transmission to the mass analyzer. The new subambient pressure ionization with nanoelectrospray (SPIN) source improves instrument sensitivity and enables new electrospray interface designs, including the use of multi-emitter approaches. Performance of the SPIN source was evaluated by electrospraying standard solutions at 300 nL/min and comparing results with those obtained from a standard atmospheric pressure ESI source that used a heated capillary inlet. This initial study demonstrated an approximately 5-fold improvement in sensitivity when the SPIN source was used compared to a standard atmospheric pressure ESI source. The importance of desolvation was also investigated by electrospraying at different flow rates, which showed that the ion funnel provided an effective desolvation region to aid the creation of gas-phase analyte ions.  相似文献   

4.
Guna M  Londry FA 《Analytical chemistry》2011,83(16):6363-6367
A new arrangement consisting of two separate radio frequency (rf) quadrupole ion traps is used to analyze large populations of ions over a wide mass-to-charge (m/z) range. The setup consists of an "accumulation" trap that is maintained at a higher pressure than the second high-performance "analyzer" trap. The two traps are scanned simultaneously, with a mass difference between that determines the residence time and mass range of ions in the analytical trap. Initially, all ions are trapped in the accumulation trap and then mass-selectively ejected into the analyzer trap. As ions arrive in the analyzer trap, they cool through collisions with the buffer gas and then are mass selectively ejected toward the detector. This concurrent linked mass scanning reduces the total number of ions present in the analyzer trap during mass analysis, thereby reducing space charge effects and leading to improved resolution and mass accuracy of analytical spectra.  相似文献   

5.
An ion mobility spectrometer that has its mobility cell as a 20-segment quadrupole and functionally the q2 of a triple-quadrupole mass spectrometer has been assembled and tested. The combination of high cell pressure (maximum of 4 Torr of helium) and low axial field (20-160 V per 20.2 cm) results in negligible internal excitation of the ions despite applications of rf and axial fields. The presence of collisional focusing ensures efficient ion transmission and good sensitivity. Collision cross sections of atomic, cluster, peptide, and protein ions were measured and found comparable to literature and calculated cross sections.  相似文献   

6.
A method for performing mass-selective instability analysis in a three-dimensional (3-D) quadrupole ion trap is described that involves scanning a direct current (dc) voltage applied to the end-cap electrodes while holding the radio frequency (rf) potential at a fixed value. Rather than eject at the ?(z) = 1 instability line by ramping the amplitude of the drive rf potential applied to the ring electrode, as with the original mass-selective instability scan, this approach effects ion ejection along the ?(z) = 0 instability line in a process identical in principle (though it varies in its method of implementation) to the previously termed "downscan" ( Todd , J. F. J. ; Penman , A. D. ; Smith , R. D. Int. J. Mass Spectrom. Ion Processes 1991 , 106 , 117 - 135 ). A linear scan of the dc amplitude results in a nonlinear mass scale, unlike the conventional resonance ejection scan with a linear scan of the rf amplitude, and the ejection of ions in the direction of high mass-to-charge (m/z) to low m/z. However, the downscan offers some advantages over the traditional rf scan for ions of high m/z values. These include a larger scannable mass range, as well as the opportunity for improved resolution at high mass. These characteristics are demonstrated with ions of m/z 10(4)-10(5).  相似文献   

7.
Kim T  Udseth HR  Smith RD 《Analytical chemistry》2000,72(20):5014-5019
A heated multicapillary inlet and ion funnel interface was developed to couple an electrospray ionization (ESI) source to a high-vacuum stage for obtaining improved sensitivity in mass spectrometric applications. The inlet was constructed from an array of seven thin-wall stainless steel tubes soldered into a central hole of a cylindrical heating block. An electrodynamic ion funnel was used in the interface region to more effectively capture, focus, and transmit ions from the multicapillary inlet. The interface of seven capillary inlets with the ion funnel showed more than 7 times higher transmission efficiency compared to that of a single capillary inlet with the ion funnel and a 23-fold greater transmission efficiency than could be obtained using the standard orifice-skimmer interface of a triple-quadrupole MS. The multiple-capillary inlet and ion funnel interface showed an overall 10% ion transmission efficiency and approximately 3-4% overall detection efficiency of ions from solution based (i.e., prior to electrospray). The improved performance was achieved under conditions where ESI operation is robust and results in a significant increase in dynamic range.  相似文献   

8.
A new ion soft landing instrument has been built for the controlled deposition of mass selected polyatomic ions. The instrument has been operated with an electrospray ionization source; its major components are an electrodynamic ion funnel to reduce ion loss, a 90-degree bent square quadrupole that prevents deposition of fast neutral molecules onto the landing surface, and a novel rectilinear ion trap (RIT) mass analyzer. The ion trap is elongated (inner dimensions: 8 mm x 10 mm x 10 cm). Three methods of mass analysis have been implemented. (i) A conventional mass-selective instability scan with radial resonance ejection can provide a complete mass spectrum. (ii) The RIT can also be operated as a continuous rf/dc mass filter for isolation and subsequent soft landing of ions of the desired m/ z value. (iii) The 90-degree bent square quadrupole can also be used as a continuous rf/dc mass filter. The mass resolution (50% definition) of the RIT in the trapping mode (radial ion ejection) is approximately 550. Ions from various test mixtures have been mass selected and collected on fluorinated self-assembled monolayers on gold substrates, as verified by analysis of the surface rinses. Desorption electrospray ionization (DESI) has been used to confirm intact deposition of [Val (5)]-Angiotensin I on a surface. Nonmass selective currents up to 1.1 nA and mass-selected currents of up to 500 pA have been collected at the landing surface using continuous rf/dc filtering with the RIT. A quantitative analysis of rinsed surfaces showed that the overall solution-to-solution soft landing yields are between 0.2 and 0.4%. Similar experiments were performed with rf/dc isolation of both arginine and lysine from a mixture using the bent square quadrupole in the rf/dc mode. The unconventional continuous mass selection methods maximize soft landing yields, while still allowing the simple acquisition of full mass spectra.  相似文献   

9.
The use of radio frequency (rf) ion guides as "linear" two-dimensional ion traps and ion guides for ion storage and accumulation, respectively, is becoming increasingly important for realizing improved sensitivity in mass spectrometry. Analytical relationships describing the ion accumulation operation mode of rf ion guides are reported. Comparisons are made between the rf quadrupole ion guide, higher-order rf multipoles and rf stacked ring ion guides, in terms of the charge capacity limitations due to the instability of ions, rf focusing efficiency limits, and effects due to rf ion heating (i.e., collisional activation due to rf oscillations of ions). Analytical relations for the stored charge quantity are derived in the low ion energy approximation, which is shown to be reasonable for the systems considered. The ion density spatial distribution is derived, an exponential form of which proved to provide a good approximation for high-order rf multipoles and stacked ring rf ion guides. The limit on the stored charge dependence upon rf is shown to be directly related to the thermal dissociation thresholds for the ions being studied; the limitation is weaker for higher-order multipoles and stacked ring ion guides. These results suggest that rf quadrupoles provide an optimum configuration when accumulation of a moderate ion density is sufficient (below 10(9) elementary charges/m). Alternatively, accumulation of an appreciable density for more fragile species, such as noncovalent complexes, may be realized using higher-order multipoles and stacked ring ion guides.  相似文献   

10.
This work describes a new type of mass analyzer which employs trapping in an electrostatic field. The potential distribution of the field can be represented as a combination of quadrupole and logarithmic potentials. In the absence of any magnetic or rf fields, ion stability is achieved only due to ions orbiting around an axial electrode. Orbiting ions also perform harmonic oscillations along the electrode with frequency proportional to (m/z)-1/2. These oscillations are detected using image current detection and are transformed into mass spectra using fast FT, similarly to FTICR. Practical aspects of the trap design are presented. High-mass resolution up to 150,000 for ions produced by laser ablation has been demonstrated, along with high-energy acceptance and wide mass range.  相似文献   

11.
The results of an experimental investigation into the factors limiting the performance of a conventional quadrupole mass filter are presented. The number of cycles of the rf field which the ions experience in travelling the length of the quadrupole is shown to be the factor limiting resolution under any given set of operating conditions. The design of an RGA is discussed in detail and it is shown that an analyzer only 2 in. long is adequate to achieve the required resolution giving at the same time a high sensitivity. This enables a small mass spectrometer to be designed capable of being fitted into a vacuum system as easily as an ionization gauge. This instrument will resolve perfectly individual peaks up to 50 amu with a limit to the detection of partial pressure of better than 10−11 torr.  相似文献   

12.
A wireless-controlled miniature rectilinear ion trap mass spectrometer system, total weight with batteries 5.0 kg, consuming less than 35 W of power, and having dimensions of 22 cm in length by 12 cm in width by 18 cm in height, is characterized. The design and construction of the mass spectrometer including mass analyzer, vacuum system, electronics system, and data acquisition and processing systems, is detailed. The mass spectrometer is compatible with various types of ionization sources including a glow discharge electron impact ionization source used in the internal ionization mode, and various atmospheric pressure ionization sources, including electrospray ionization, atmospheric pressure chemical ionization, and desorption electrospray ionization, which are employed for external, atmospheric pressure ionization. These external sources are coupled to the miniature mass spectrometer via a capillary interface that is operated in a discontinuous fashion (discontinuous atmospheric pressure interface) to maximize ion transport. The performance of the mass spectrometer for large and small molecules is characterized. Limits of detection in the parts-per-billion range were obtained for selected compounds examined using both the internal ionization and external ionization modes. Tandem mass spectrometry and fast in situ analysis capabilities are also demonstrated using a variety of compounds and ionization sources. Protein molecules are analyzed as the multiply protonated molecules with mass/charge ratios up to 1500 Da/charge.  相似文献   

13.
A combined electrodynamic ion funnel and ion trap coupled to an orthogonal acceleration (oa)-time-of-flight mass spectrometer was developed and characterized. The ion trap was incorporated through the use of added terminal electrodynamic ion funnel electrodes enabling control over the axial dc gradient in the trap section. The ion trap operates efficiently at a pressure of approximately 1 Torr, and measurements indicate a maximum charge capacity of approximately 3 x 10(7) charges. An order of magnitude increase in sensitivity was observed in the analysis of low concentration peptides mixtures with orthogonal acceleration (oa)-time-of-flight mass spectrometry (oa-TOF MS) in the trapping mode as compared to the continuous regime. A signal increase in the trapping mode was accompanied by reduction in the chemical background, due to more efficient desolvation of, for example, solvent related clusters. Controlling the ion trap ejection time was found to result in efficient removal of singly charged species and improving signal-to-noise ratio (S/N) for the multiply charged analytes.  相似文献   

14.
Gao L  Cooks RG  Ouyang Z 《Analytical chemistry》2008,80(11):4026-4032
The performance of mass spectrometers with limited pumping capacity is shown to be improved through use of a discontinuous atmospheric pressure interface (DAPI). A proof-of-concept DAPI interface was designed and characterized using a miniature rectilinear ion trap mass spectrometer. The interface consists of a simple capillary directly connecting the atmospheric pressure ion source to the vacuum mass analyzer region; it has no ion optical elements and no differential pumping stages. Gases carrying ionized analytes were pulsed into the mass analyzer for short periods at high flow rates rather than being continuously introduced at lower flow rates; this procedure maximized ion transfer. The use of DAPI provides a simple solution to the problem of coupling an atmospheric pressure ionization source to a miniature instrument with limited pumping capacity. Data were recorded using various atmospheric pressure ionization sources, including electrospray ionization (ESI), nano-ESI, atmospheric pressure chemical ionization (APCI), and desorption electrospray ionization (DESI) sources. The interface was opened briefly for ion introduction during each scan. With the use of the 18 W pumping system of the Mini 10, limits of detection in the low part-per-billion levels were achieved and unit resolution mass spectra were recorded.  相似文献   

15.
A new ion sampling interface for an electrospray ionization 3D ion trap mass spectrometer system is described. The interface uses linear rf quadrupoles as ion guides and ion traps to enhance the performance of the 3D trap. Trapping ions in the linear quadrupoles is demonstrated to improve the duty cycle of the system. Dipolar excitation of ions trapped in a linear quadrupole is used to eject unwanted ions. A resolution of ejection of up to 254 is demonstrated for protonated reserpine ions (m/z 609.3). A composite waveform with a notch in frequency space is used to eject a wide range of matrix ions and to isolate trace analyte ions in a linear quadrupole before ions are injected into the 3D trap. This is useful to overcome space charge problems in the 3D trap caused by excess matrix ions. For trace reserpine in a 500-fold molar excess of poly(propylene glycol) (PPG), it is demonstrated that the resolution and sensitivity of the 3D trap can be increased dramatically with ejection of the excess PPG matrix ions. In comparison to ejection of matrix ions in the 3D trap with a similar broad-band waveform, a 5-fold increase in sensitivity with a 7 times shorter acquisition time was achieved.  相似文献   

16.
Cold cathode carbon nanotubes (CNTs) are used in a low-voltage quadrupole ion trap mass spectrometer and shown to be a viable low-power alternative to filament sources for portable mass spectrometry instrumentation. No heating is necessary, and the power consumption depends only on the switching characteristics of the electronics. The CNT electron sources are mounted directly in the ring electrode, and their performance is compared directly with a filament source also mounted in the ring electron. Up to a 5 × 10(-4) Torr CO(2) environment, reflecting conditions expected during operation in a Mars atmosphere, the CNT emitters may provide up to 1 μA of current over more than 200 h.  相似文献   

17.
Lizhu Tong  Kenichi Nanbu 《Vacuum》2006,80(9):1012-1015
The role of positive−negative ion recombination in simulating radio frequency (rf) SF6 discharges is investigated based on Nanbu and Denpoh's theory [J. Phys. Soc. Jpn. 1998; 67: 1288]. The model of ion recombination is combined with the Particle-in-Cell/Monte Carlo (PIC/MC) simulation. Results show that the ion recombination is a dominant factor in simulating a steady rf discharge of SF6. A criterion determining whether a periodic steady state is reached is proposed based on the ion recombination rate. It is found that the ion recombination rapidly increases as the gas pressure increases. From 25 to 50 m Torr, the loss of positive ions caused by ion recombination becomes comparable with that lost from collisions with electrodes.  相似文献   

18.
We propose and demonstrate a new method for multiple-stage mass spectrometry (MSn), collision-activated infrared multiphoton dissociation (CA-IRMPD), which is very effective for the quadrupole ion trap mass spectrometer (QITMS). CA-IRMPD uses a combination of focused laser irradiation (beam radius, approximately 0.4 mm) and collisional activation by a supplemental AC voltage between endcap electrodes. This combination enables IRMPD, which has conventionaLly been ineffective above 10(-4) Torr, to be used under a standard bath gas pressure of 2-8 mTorr. CA-IRMPD can produce richer spectra of product ions than CID or IRMPD while maintaining high sensitivity and mass resolution; thus, it will contribute to an accurate determination of peptide sequences.  相似文献   

19.
Currently, proton-transfer reaction mass spectrometry (PTR-MS) allows for quantitative determination of volatile organic compounds in real time at concentrations in the low ppt range, but cannot differentiate isomers or isobaric molecules, using the conventional quadrupole mass filter. Here we pursue the application of linear quadrupole ion trap (LIT) mass spectrometry in combination with proton-transfer reaction chemical ionization to provide the advantages of specificity from MS/MS. A commercial PTR-MS platform composed of a quadrupole mass filter with the addition of end cap electrodes enabled the mass filter to operate as a linear ion trap. The rf drive electronics were adapted to enable the application of dipolar excitation to opposing rods, for collision-induced dissociation (CID) of trapped ions. This adaptation enabled ion isolation, ion activation, and mass analysis. The utility of the PTR-LIT was demonstrated by distinguishing between the isomeric isoprene oxidation pair, methyl vinyl ketone (MVK) and methacrolein (MACR). The CID voltage was adjusted to maximize the m/ z 41 to 43 fragment ratio of MACR while still maintaining adequate sensitivity. Linear calibration curves for MVK and MACR fragments at m/ z 41 and 43 were obtained with limits of detection of approximately 100 ppt, which should enable ambient measurements. Finally, the PTR-LIT method was compared to an established GC/MS method by quantifying MVK and MACR production during a smog chamber isoprene-NO x irradiation experiment.  相似文献   

20.
Methods for bidirectional ion transmission between distinct quadrupole arrays were developed on a quadrupole/time-of-flight tandem mass spectrometer (QqTOF) containing three quadrupoles (ion guide Q0, mass filter Q1, and collision cell Q2) and a reflectron TOF analyzer, for the purpose of implementing multistage ion/ion reaction experiments. The transfer efficiency, defined as the percentage of ions detected after two transfer steps relative to the initial ion abundance, was found to be about 60% between Q2 and Q0 (with passage through the intermediate array (Q1)) and almost 100% between Q2 and Q1. Efficient ion transfer enabled new means for executing MSn experiments on an instrument of this type by operating Q1 in rf/dc mode for performing multiple steps of precursor/product ion isolation while passing ions through Q1 or trapping ions in Q1. In the latter case, the Q1 functioned as a linear ion trap. Either collision induced dissociation (CID) or ion/ion reactions can be conducted in between each stage of mass analysis. MS3 or MS4 experiments were developed to illustrate the charge increase of peptide ions via two steps of charge inversion ion/ion reactions, CID of electron-transfer dissociation (ETD) products and CID of a metal-peptide complex formed from ion/ion reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号