首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The conventional pecking response key, although an excellent transducer of response rate, can provide minimal information on the topography, coordination, or localization of conditioned pecking. We describe the hardware and software components of a system that, in addition to recording response rates, permits simultaneous "on-line" monitoring of head acceleration, jaw movement, terminal peck location, and duration of pecking response. Head movements are monitored with a miniature accelerometer, jaw movements with a magnetosensitive transducer, and peck location with modified touch screen technology. Initial experiments with the system suggest that it will be useful in studies of response differentiation, acquisition and maintenance of complex discriminations, and interaction of conditioned and unconditioned stimuli in the control of pecking response probability and response topography.  相似文献   

2.
In macaque ventral premotor cortex, we recorded the activity of neurons that responded to both visual and tactile stimuli. For these bimodal cells, the visual receptive field extended from the tactile receptive field into the adjacent space. Their tactile receptive fields were organized topographically, with the arms represented medially, the face represented in the middle, and the inside of the mouth represented laterally. For many neurons, both the visual and tactile responses were directionally selective, although many neurons also responded to stationary stimuli. In the awake monkeys, for 70% of bimodal neurons with a tactile response on the arm, the visual receptive field moved when the arm was moved. In contrast, for 0% the visual receptive field moved when the eye or head moved. Thus the visual receptive fields of most "arm + visual" cells were anchored to the arm, not to the eye or head. In the anesthetized monkey, the effect of arm position was similar. For 95% of bimodal neurons with a tactile response on the face, the visual receptive field moved as the head was rotated. In contrast, for 15% the visual receptive field moved with the eye and for 0% it moved with the arm. Thus the visual receptive fields of most "face + visual" cells were anchored to the head, not to the eye or arm. To construct a visual receptive field anchored to the arm, it is necessary to integrate the position of the arm, head, and eye. For arm + visual cells, the spontaneous activity, the magnitude of the visual response, and sometimes both were modulated by the position of the arm (37%), the head (75%), and the eye (58%). In contrast, to construct a visual receptive field that is anchored to the head, it is necessary to use the position of the eye, but not of the head or the arm. For face + visual cells, the spontaneous activity and/or response magnitude was modulated by the position of the eyes (88%), but not of the head or the arm (0%). Visual receptive fields anchored to the arm can encode stimulus location in "arm-centered" coordinates, and would be useful for guiding arm movements. Visual receptive fields anchored to the head can likewise encode stimuli in "head-centered" coordinates, useful for guiding head movements. Sixty-three percent of face + visual neurons responded during voluntary movements of the head. We suggest that "body-part-centered" coordinates provide a general solution to a problem of sensory-motor integration: sensory stimuli are located in a coordinate system anchored to a particular body part.  相似文献   

3.
1. Eye- and head movements were recorded in unrestrained, spontaneously behaving rabbits with a new technique, based upon phase detection of signals induced in implanted coils by a rotating magnetic field. 2. Movements of the eye in space were exclusively saccadic. In the intersaccadic intervals the eyes were stabilized in space, even during vigorous head movements. Most of this stability was maintained in darkness, except for the occurrence of slow drift. 3. Many saccades were initiated while the head was stationary. They were accompanied by a similar, but slower head rotation with approximately the same amplitude. The displacement of the eye in space was a pure step without appreciable under- or over-shoot. The deviation of the eye in the head was mostly transient. 4. Other saccades were started while the head was moving and were possibly fast phases of a vestibulo-ocular reflex. The time course of the eye movement in space was identical for all saccades, whether the head was moving prior to the saccade or not. Eye movements without any head movement were not observed. 5. Saccades were mostly large (average 20-6 +/- 12-4 degrees S.D.) and never smaller than 1 degree. The relations of maximal velocity and duration to amplitude were similar to those reported for man. 6. Visual pursuit of moving objects, when elicited, was only saccadic and never smooth. 7. It is concluded that the co-ordination and dynamics of the rabbit's head- and eye movements are similar to those of primates. In the absence of foveal specilization, the eye movements are restricted to a rather global redirection of the visual field, possibly in particular of the binocular area.  相似文献   

4.
The visual system interacts synergistically with the vestibular system. A normally functioning vestibulo-ocular reflex is necessary but not sufficient for optimum visual acuity during head motion. Studies of dynamic visual acuity, the acuity achieved during relative motion of visual targets or of the observer, indicate that motion of images on the retina markedly compromises vision. The vestibulo-ocular reflex normally provides a substantial measure of stabilization of the retina during head movements, but purely vestibular compensatory eye movements are not sufficiently precise for optimal vision under all circumstances. Other mechanisms, including visual tracking, motor preprogramming, prediction, and mental set, interact synergistically to optimize the gain (eye velocity divided by head velocity) of compensatory head movements. All of these mechanisms are limited in their capacity to produce effective visual-vestibular interaction at higher rotational frequencies and velocities. It is under these conditions that vestibular deficits give rise to symptoms of oscillopsia. Patients having vestibular lesions exploit mechanisms of visual-vestibular interaction to compensate by substitution for deficient vestibular function. Thus, for accurate topographic clinical diagnosis of vestibular lesions, testing conditions should isolate purely vestibular responses. This may be done by testing reflex eye movements during passively generated rotations in darkness, or perhaps by testing during other types of motion under conditions of extreme frequency and velocity sufficient to attenuate the effects of visual-vestibular interaction. This article reviews clinical tests of vestibular function in relation to synergistic interactions with vision.  相似文献   

5.
Useful medical diagnostic information has been reported from low-frequency rotational testing of the horizontal vestibulo-ocular reflex (VOR) of patients with vestibular disorders. Servocontrolled rotating systems have been used as the only practical method to generate stimuli over lower VOR frequency response ranges, the decade from 0.01 to 0.1 Hz. Active head movements have been used for testing the human VOR at higher frequencies, exceeding 0.5 Hz. We examined whether active head movements could be used also to test the VORs of subjects over lower frequency ranges, extending to 0.02 Hz. We used a swept-frequency, active head movement protocol to generate a broad-band stimulus. Eye position was recorded with electro-oculography. Head velocity was recorded with a rotational sensor attached to a head band. Six individual test epochs from human subjects were concatenated to form complex, periodic waveforms of head and eye velocity, 75 seconds in duration. Broad-band cross-spectral signal processing methods were used to compute horizontal VOR system characteristics from these waveforms extending from 0.02 to 2 Hz. The low-frequency VOR data appeared to originate from amplitude modulation of high-frequency active movements, acting as carrier signals. Control experiments and processing of simulated data from a known system excluded the possibility of signal processing artifacts. Results from six healthy subjects showed low-frequency gains and phase values in ranges similar to those from published rotational chair studies of normal subjects. We conclude that it is feasible to test the human VOR over extended low-frequency ranges using active head movements because of amplitude modulation of the head and eye signals.  相似文献   

6.
An arrow, motor driven to make "pecking" movements, released and directed pecking by 412 1-day-old domestic chickens. Stimuli (colored plastic pinheads) placed on or near the arrow tip resulted in pecking selectively directed to matching stimuli. Innate color and position preferences, a preference for stimuli with low environmental density, and a possible tendency of Ss to peck toward the center of a mass of peck-releasing stimuli were experimentally eliminated as explanations for the phenomenon. Other unsatisfactory explanations include reinforcement effects, social facilitation, and local enhancement. Arrow-directed pecking developed over trials, persisted after removal of arrow-operation and/or model stimuli, and required for acquisition only visual exposure to modeling conditions. Results demonstrate the operation of a mechanism for transmission of abstract information about the visual characteristics of food objects from hen to chicks. (21 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
We measured the movements of the external ear, or pinna, using the magnetic search coil technique in cats trained to look at auditory and visual targets for a food reward. No behavioral contingencies were placed on pinna movements. Prominent pinna movements accompany eye movements when the animal orients to either auditory or visual stimuli. In visual trials the pinna movements are coordinated with eye movements, suggesting that they are part of the general orientation response of the animal. In auditory trials the pinna response was composed of two movements: short- and long-latency components. Whereas the long-latency component seemed to occur with the eye movement to the target, the short-latency component was coupled to the onset of the stimulus. The short-latency component ( approximately 25 msec) was highly asymmetrical, being largest in the pinna ipsilateral to the stimuli. In one animal it persisted after >10(5) trials.  相似文献   

8.
The effects of stimulus duration and prior task experience on gaze shift were studied to determine the spatial characteristics of gaze shift as affected by prior experience. Thirty-six subjects (with normal or corrected-to-normal vision) participated in two sessions of a task that required viewing two consecutively presented letters at either 15 degrees or 50 degrees eccentricity and deciding whether they were the same or different. In the first session (SS1) a letter was presented for either 500 (N = 18) or 1000 ms (N = 18), followed by a second letter. In session 2 (SS2), the groups were divided with half of the group performing the task under the same conditions as they did in SS1, while the other half was switched to the other first letter duration. Head and eye movements were recorded using a photoelectric transducer and electrooculogram (EOG), respectively. Few head movements occurred with targets presented at 15 degrees eccentricity. Approximately 80% of gaze shifts to the 50 degrees stimuli included a head movement component. DURATION had a significant effect on gaze shift. Head movement amplitude (HMA) increased, while saccade amplitude decreased with an increase in DURATION. On the average, the proportion of gaze shift accomplished via head movement was 24% if DURATION was 500 ms, and 37% when DURATION was extended to 1000 ms. SS1 task experience affected HMA in SS2. When DURATIONs differed between SS1 and SS2, HMA in SS2 were drawn toward the level of HMA in SS1. A positive and significant correlation was observed between head movement amplitude and head movement duration. The results suggest that both stimulus availability and prior experience affect head movement amplitude in gaze shift.  相似文献   

9.
This study investigated a claim of the Neuro-Linguistic Programming (NLP) eye movement model, which states that specific eye movements are indicative of specific sensory components in thought. Forty-eight graduates and undergraduates were asked to concentrate on a single thought while their eye movements were videotaped. They were subsequently asked to report if their thoughts contained visual, auditory, or kinesthetic components. Two NLP-trained observers independently viewed silent videotapes of participants concentrating and recorded the presence or absence of eye movements posited by NLP theorists to indicate visual, auditory, or kinesthetic components in thought. Coefficients of agreement (Cohen's K) between participants' self-reports and trained observers' records indicate support for the visual (K?=?.81, p?p?p?  相似文献   

10.
1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties that could be characterized as the low-frequency range of "translational" otolith-ocular reflexes; and 2) response vectors associated with an eye position modulation in phase with head position ("tilt" otolith-ocular reflexes). 4. The responses associated with two otolith-ocular vectors with pronounced dynamics consisted of horizontal eye movements evoked as a function of gravity along the interaural axis and vertical eye movements elicited as a function of gravity along the vertical head axis. Both responses were characterized by a slow-phase eye velocity sensitivity that increased three- to five-fold and large phase changes of approximately 100-180 degrees between 0.02 and 0.51 Hz. These dynamic properties could suggest nontraditional temporal processing in utriculoocular and sacculoocular pathways, possibly involving spatiotemporal otolith-ocular interactions. 5. The two otolith-ocular vectors associated with eye position responses in phase with head position (tilt otolith-ocular reflexes) consisted of torsional eye movements in response to gravity along the interaural axis, and vertical eye movements in response to gravity along the nasooccipital head axis. These otolith-ocular responses did not result from an otolithic effect on slow eye movements alone. Particularly at high frequencies (i.e., high speed rotations), saccades were responsible for most of the modulation of torsional and vertical eye position, which was relatively large (on average +/- 8-10 degrees/g) and remained independent of frequency. Such reflex dynamics can be simulated by a direct coupling of primary otolith afferent inputs to the oculomotor plant. (ABSTRACT TRUNCATED)  相似文献   

11.
Lead is ubiquitous in the environment, and trace amounts enter the food chain and bioaccumulate in organisms high on the food chain. Although lead levels have been examined in a variety of wild species, effects data are usually from laboratory studies. Thus the relevance of effects to survival and fitness are not directly determined. In the field we compared the behavior of lead-injected young herring gulls (Larus argentatus) to the behavior of their control siblings who received an injection with no lead and to chicks from control nests that received no injections. Lead-injected chicks had significantly lower survival rates than all controls. Lead-injected chicks were less healthy than control chicks as measured by begging and walking scores and by the number of times they stumbled when walking. Control chicks had a higher degree of accuracy when pecking at their parents' bills to stimulate feeding compared to the lead-injected chicks. For all chicks, begging and walking scores improved with age. Behavioral deficits measured in the laboratory are homologous with those observed in the field.  相似文献   

12.
Evaluated theories of response to altered retinal feedback i.e., associative learning doctrines and the feedback-compensation hypothesis in relation to their application in defining human factors principles in machine and perceptual training designs. Using 12 Ss, controlled comparisons were made of the relative effects of reversed and delayed feedback of head and eye movements under conditions in which head movements could not compensate altered feedback of eye movements and vice versa. Findings, e.g., the accuracy of ocular tracking, etc., are discussed. Some results indicate that there was little or no learned adaptation to the reversed and delayed vision produced by head and eye movements. Findings support a behavioral cybernetic interpretation of the guidance factors in man-machine and perceptual systems relationships by showing that the effects of altered feedback in machine and systems operation are determined by movement capabilities in compensating displacements and delays in sensory input. Results also suggest that visual impairments may be produced by delays in the retinal feedback effects of eye and head movements and that these defects may require dynamic methods of optometric diagnosis and training for their measurement and correction. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
Videonystagmoscopy has been used to subjectively observe the responses of the vestibular system in a population of patients with vestibular deficits. These results were compared with those of a control group of healthy, age-matched volunteers. The videonystagmoscopy device is made of one or two CCD cameras mounted on lightproof goggles, allowing a subjective observation of ocular movements on a video monitor. The eye movements, as well as the position of the head in space, can be recorded on videotape. The eyes are illuminated by infrared light emitting diodes placed on each side of the camera lens. The subjects are seated on a manually driven Barany chair. Subjects went through a protocol of passive roll head tilt on each side, followed by a slow, whole body rotation of 180 degrees amplitude, clockwise and counterclockwise, and then a head shaking test (HST). The eyes were subjectively observed, and we focussed on: torsional eye movements during head tilt, nystagmus when the rotation had stopped, and nystagmus induced by HST. With this simple and noninvasive examining procedure, screening of vestibular function at the bedside or during E.N.T. clinical investigations is possible.  相似文献   

14.
Eye-head coordination during saccadic gaze shifts normally relies on vestibular information. A vestibulo-saccadic reflex (VSR) is thought to reduce the eye-in-head saccade to account for current head movement, and the vestibulo-ocular reflex (VOR) stabilizes postsaccadic gaze while the head movement is still going on. Acute bilateral loss of vestibular function is known to cause overshoot of gaze saccades and postsaccadic instability. We asked how patients suffering from chronic vestibular loss adapt to this situation. Eye and head movements were recorded from six patients and six normal control subjects. Subjects tracked a random sequence of horizontal target steps, with their heads (1) fixed in primary position, (2) free to move, or (3) preadjusted to different head-to-target offsets (to provoke head movements of different amplitudes). Patients made later and smaller head movements than normals and accepted correspondingly larger eye eccentricities. Targeting accuracy, in terms of the mean of the signed gaze error, was better in patients than in normals. However, unlike in normals, the errors of patients exhibited a large scatter and included many overshoots. These overshoots cannot be attributed to the loss of VSR because they also occurred when the head was not moving and were diminished when large head movements were provoked. Patients' postsaccadic stability was, on average, almost as good as that of normals, but the individual responses again showed a large scatter. Also, there were many cases of inappropriate postsaccadic slow eye movements, e.g., in the absence of concurrent head movements, and correction saccades, e.g., although gaze was already on target. Performance in patients was affected only marginally when large head movements were provoked. Except for the larger lag of the head upon the eye, the temporal coupling of eye and head movements in patients was similar to that in normals. Our findings show that patients with chronic vestibular loss regain the ability to make functionally appropriate gaze saccades. We assume, in line with previous work, three main compensatory mechanisms: a head movement efference copy, an active cervico-ocular reflex (COR), and a preprogrammed backsliding of the eyes. However, the large trial-to-trial variability of targeting accuracy and postsaccadic stability indicates that the saccadic gaze system of patients does not regain the high precision that is observed in normals and which appears to require a vestibular head-in-space signal. Moreover, this variability also permeates their gaze performance in the absence of head movements.  相似文献   

15.
Sixteen therapists each saw a volunteer client for a single counseling session. During a videotape review the clients recorded their reactions and the therapists recorded their perceptions of client reactions to each therapist intervention. Client nonverbal behaviors (speech hesitancies, vertical and horizontal head movements, arm movements, leg movements, postural shifts, adaptors, illustrators, and smiles) were examined to determine whether they were consistently associated with client reactions. The results indicated that horizontal head movements were associated with client reports of supported and therapeutic work reactions and were also associated with therapist perceptions of therapeutic work reactions; vertical head movements were associated with client reports of supported reactions; and speech hesitancies were associated with therapist perceptions of therapeutic work reactions. The results are discussed in terms of implications for practice and further research. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
Corneal afferent projections to the trigeminal brainstem nuclear complex (TBNC) and associated structures, as determined by transganglionic transport of various tracers, were found to be predominantly concentrated in two distinct patches in the dorsolateral medulla at periobex levels. One was in the external cuneate nucleus, and the other was in the ventralmost part of the ophthalmic division of the TBNC. The projections of putative second-order neurons in these regions, as determined by injections of wheat germ agglutinin conjugated to horseradish peroxidase into the dorsolateral medulla, were found to include the dorsal trigeminal motor nucleus (Vd), which innervates the M. depressor palpebrae inferioris. Electrical stimulation of Vd, which elicited lower eyelid movements, was then used to guide injections of tracer into Vd, which retrogradely labeled clusters of neurons in the corneal afferent recipient regions of the dorsolateral medulla. The lower eyelid of pigeons, unlike the nictitating membrane and upper lid, does not appear to be appreciably involved in either reflex blinking in response to relatively mild stimulation of the cornea (e.g., air puff), or in eye closure during the saccade-like head movements associated with walking, or in eye closure during pecking; but in response to a stimulus that makes corneal contact, an upward movement of the lower lid follows descent of the nictitating membrane and upper lid as part of a defensive eye-closing mechanism. The anatomical results thus appear to define a dedicated disynaptic trigeminal sensorimotor circuit for the control of lower eyelid motility in response to mechanical or noxious stimuli of the cornea. Injections of tracers into the lower and upper eyelids labeled palpebral sensory afferents that terminated predominantly in maxillary and ophthalmic portions, respectively, of the dorsal horn of upper cervical spinal segments. These terminal fields were therefore largely separate from those of corneal afferents. There were no specific corneal afferent projections upon accessory abducens motoneurons that innervate the two muscles controlling the nictitating membrane.  相似文献   

17.
BACKGROUND: We investigated the effect of vertical acceleration upon the otolithic-ocular reflex of 22 healthy people. The study was performed to obtain standard values for subsequent investigations at patients. METHODS: People sitting on a chair were accelerated in the vertical axis with an amplitude of 4 cm and the frequencies of 0.5 Hz, 1 Hz, 1.5 Hz, 2 Hz, 2.5 Hz and 2.7 Hz. The movements of the ocular globe were initially recorded during vertical acceleration with the eyes closed. Then visual acuity was tested during linear acceleration with the eyes open. As parameters of evaluation we used coherence and alteration of the visual acuity. RESULTS: When the frequency was increased while the eyes were closed, coherence increased and the number of people with vertical eye movements increased. Amplitude was observed to increase and a phase shift occurred. A significant value of coherence (> 0.8) was observed at a frequency above 2.5 Hz. During the test of visual acuity, coherence also increased but did not reach quantity we observed initially. A significant loss of visual acuity occurred at a frequency above 2.5 Hz. A phase shift was also observed. The reason for the loss of visual acuity was the increment of amplitude and the phase shift, which had a negative influence on fixation. CONCLUSIONS: In summary, reactions with closed eyes are best tested at frequencies of 2.5 and 2.7 Hz. We recommended frequencies of 1.5 and 2 Hz for testing visual acuity.  相似文献   

18.
Human vestibuloocular reflex and its interactions with vision and fixation distance during linear and angular head movement. J. Neurophysiol. 80: 2391-2404, 1998. The vestibuloocular reflex (VOR) maintains visual image stability by generating eye movements that compensate for both angular (AVOR) and linear (LVOR) head movements, typically in concert with visual following mechanisms. The VORs are generally modulated by the "context" in which head movements are made. Three contextual influences on VOR performance were studied during passive head translations and rotations over a range of frequencies (0.5-4 Hz) that emphasized shifting dynamics in the VORs and visual following, primarily smooth pursuit. First, the dynamic characteristics of head movements themselves ("stimulus context") influence the VORs. Both the AVOR and LVOR operate with high-pass characteristics relative to a head velocity input, although the cutoff frequency of the AVOR (<0.1 Hz) is far below that of the LVOR ( approximately 1 Hz), and both perform well at high frequencies that exceed, but complement, the capabilities of smooth pursuit. Second, the LVOR and AVOR are modulated by fixation distance, implemented with a signal related to binocular vergence angle ("fixation context"). The effect was quantified by analyzing the response during each trial as a linear relationship between LVOR sensitivity (in deg/cm), or AVOR gain, and vergence (in m-1) to yield a slope (vergence influence) and an intercept (response at 0 vergence). Fixation distance (vergence) was modulated by presenting targets at different distances. The response slope rises with increasing frequency, but much more so for the LVOR than the AVOR, and reflects a positive relationship for all but the lowest stimulus frequencies in the AVOR. A third influence is the context of real and imagined targets on the VORs ("visual context"). This was studied in two ways-when targets were either earth-fixed to allow visual enhancement of the VOR or head-fixed to permit visual suppression. The VORs were assessed by extinguishing targets for brief periods while subjects continued to "fixate" them in darkness. The influences of real and imagined targets were most robust at lower frequencies, declining as stimulus frequency increased. The effects were nearly gone at 4 Hz. These properties were equivalent for the LVOR and AVOR and imply that the influences of real and imagined targets on the VORs generally follow low-pass and pursuit-like dynamics. The influence of imagined targets accounts for roughly one-third of the influence of real targets on the VORs at 0.5 Hz.  相似文献   

19.
The floccular lobe of the monkey is critical for the generation of visually-guided smooth eye movements. The present experiments reveal physiological correlates of the directional organization in the primate floccular lobe by examining the selectivity for direction of eye motion and visual stimulation in the firing of individual Purkinje cells (PCs) and mossy fibers. During tracking of sinusoidal target motion along different axes in the frontoparallel plane, PCs fell into two classes based on the axis that caused the largest modulation of simple-spike firing rate. For "horizontal" PCs, the response was maximal during horizontal eye movements, with increases in firing rate during pursuit toward the side of recording (ipsiversive). For "vertical" PCs, the response was maximal during eye movement along an axis just off pure vertical, with increases in firing rate during pursuit directed downward and slightly contraversive. During pursuit of target motion at constant velocity, PCs again fell into horizontal and vertical classes that matched the results from sinusoidal tracking. In addition, the directional tuning of the sustained "eye velocity" and transient "visual" components of the neural responses obtained during constant velocity tracking were very similar. PCs displayed very broad tuning approximating a cosine tuning curve; the mean half-maximum bandwidth of their tuning curves was 170-180 degrees. Other cerebellar elements, related purely to eye movement and presumed to be mossy fibers, exhibited tuning approximately 40 degrees narrower than PCs and had best directions that clustered around the four cardinal directions. Our data indicate that the motion signals encoded by PCs in the monkey floccular lobe are segregated into channels that are consistent with a coordinate system defined by the vestibular apparatus and eye muscles. The differences between the tuning properties exhibited by PCs compared with mossy fibers indicate that a spatial transformation occurs within the floccular lobe.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号