首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of vanadium oxide loading in the supported VOx/Al2O3 catalyst system upon the dehydrated surface vanadia molecular structure, surface acidic properties, reduction characteristics and the catalytic oxidative dehydrogenation (ODH) of ethane to ethylene was investigated. Characterization of the supported VOx/Al2O3 catalysts by XPS surface analysis and Raman spectroscopy revealed that vanadia was highly dispersed on the Al2O3 support as a two-dimensional surface VOx overlayer with monolayer surface coverage corresponding to 9 V/nm2. Furthermore, Raman revealed that the extent of polymerization of surface VOx species increases with surface vanadia coverage in the sub-monolayer region. Pyridine chemisorption-IR studies revealed that the number of surface Brønsted acid sites increases with increasing surface VOx coverage and parallels the extent of polymerization in the sub-monolayer region. The reducibility of the surface VOx species was monitored by both H2-TPR and in situ Raman spectroscopy and also revealed that the reducibility of the surface VOx species increases with surface VOx coverage and parallels the extent of polymerization in the sub-monolayer region. The fraction of monomeric and polymeric surface VOx species has been quantitatively calculated by a novel UV–Vis DRS method. The overall ethane ODH TOF value, however, is constant with surface vanadia coverage in the sub-monolayer region. The constant ethane TOF reveals that both isolated and polymeric surface VOx species possess essentially the same TOF value for ethane activation. The reducibility and Brønsted acidity of the surface VOx species, however, do affect the ethylene selectivity. The highest selectivity to ethylene was obtained at a surface vanadia density of 2.2 V/nm2, which corresponds to a little more than 0.25 monolayer coverage. Below 2.2 V/nm2, exposed Al support cations are responsible for converting ethylene to CO. Above 2.2 V/nm2, the enhanced reducibility and surface Brønsted acidity appear to decrease the ethylene selectivity, which may also be due to higher conversion levels. Above monolayer coverage, crystalline V2O5 nanoparticles are also present and do not contribute to ethane activation, but are responsible for unselective conversion of ethylene to CO. The crystalline V2O5 nanoparticles also react with the Al2O3 support at elevated temperatures via a solid-state reaction to form crystalline AlVO4, which suppresses ethylene combustion of the crystalline V2O5 nanoparticles. The molecular structure–chemical characteristics of the surface VOx species demonstrate that neither the terminal VO nor bridging VOV bonds influence the chemical properties of the supported VOx/Al2O3 catalysts, and that the bridging VOAl bond represents the catalytic active site for ethane activation.  相似文献   

2.
V2O5/AC has been reported to be active for selective catalytic reduction (SCR) of NO with NH3 at around 200 °C and resistant to SO2 deactivation. To elucidate its SCR mechanism, adsorption and oxidation of NH3 over V2O5/AC are studied in this paper using TG, MS and DRIFTS techniques. It is found that the adsorption and oxidation of NH3 take place mainly at VO bond of V2O5. A higher V2O5 loading results in more NH3 adsorption on the catalyst. V2O5 contains both Brnsted and Lewis acid sites; NH4+ on Brnsted acid sites is less stable and easier to be oxidized than NH3 on Lewis acid sites. Gaseous O2 promotes interaction of NH3 with AC and oxidation of NH3 over V2O5/AC. NH3 is oxidized into NH2 and acylamide structures and then to isocyanate species, which is an intermediate for N2 formation.  相似文献   

3.
The DFT molecular modeling of N2O decomposition over cobalt spinel (1 0 0) plane was performed using a cluster approach, and applied to rationalize the experimental reactivity data. The energetics of the postulated elementary steps such as N2O adsorption, N2O activation through dissociative electron or oxygen atom transfer, surface diffusion of resultant oxygen intermediates, and their recombination into O2, was evaluated and discussed. The geometry and electronic structure of the implicated active sites and intermediates were determined. Three different transition states were found for the activation of nitrous oxide molecule. In the preferred electron transfer mechanism, involving a monodentate transition state, the N2O activation and the formation of dioxygen are energetically the most demanding steps, whereas the barrier for the oxygen surface diffusion was found to be distinctly smaller. For the oxygen atom transfer the reaction is energetically constraint by the NO bond-breaking step. The inhibiting effect of co-adsorbed water and oxygen on the particular reaction steps was briefly addressed.  相似文献   

4.
Two hybrid compounds based on {Mo5O16} ribbon-like chains, [M(3-pt)2(Mo5O16)]·H2O (M = Co, Mn) (1 and 2) {3-pt = 5-(3-pyridyl)-tetrazole}, have been hydrothermally synthesized and characterized by single crystal X-ray diffraction. Three-dimensional Mo/O/MII/tetrazole frameworks of the title compounds are constructed from 1D infinite ribbon-like [Mo5O16]2− chains covalently linked through [M(3-ptz)]2+ fragments via OM and NMo coordinate bonds. It is noteworthy that the isostructural compounds contain an unprecedented 3D bimetallic oxide network with 16-membered wheel clusters in which two parallel interdigitated stacks of 3-pt ligands are trapped. Remarkably, the title complexes represent the first two examples of the solid materials containing {Mo5O16} ribbon-like chains.  相似文献   

5.
The hydrodesulfurization (HDS) of benzothiophene (BT) and dihydrobenzothiophene (DHBT) was studied over a sulfided Mo/γ-Al2O3 catalyst at 5 MPa and 280 and 300 °C. In the absence of H2S, benzothiophene reacted by hydrogenation to dihydrobenzothiophene and by hydrogenolysis to ethylbenzene (EB), and dihydrobenzothiophene reacted by hydrogenolysis to ethylbenzene. H2S inhibited both hydrogenation and hydrogenolysis, but the latter much more strongly. The reverse inhibition was observed for 2-methylpiperidine (MPi). In the presence of H2S and/or 2-methylpiperidine, dihydrobenzothiophene reacted to ethylbenzene as well as by total hydrogenation to octahydrobenzothiophene, and on to ethylcyclohexenes and ethylcyclohexane. Dihydrobenzothiophene did not react back to benzothiophene at and below 300 °C, while the equivalent tetrahydrodibenzothiophene reacted fast to an equilibrium with tetrahydrodibenzothiophene, due to stabilization of the vinylic bond by the alkyl groups. The observed products and kinetic results were explained by a model in which the CS bonds were mainly broken by hydrogenolysis.  相似文献   

6.
In this work, we investigated the NOx storage behavior of Pt/BaO/CeO2 catalysts, especially in the presence of SO2. High surface area CeO2 (110 m2/g) with a rod like morphology was synthesized and used as a support. The Pt/BaO/CeO2 sample demonstrated slightly higher NOx uptake in the entire temperature range studied compared with Pt/BaO/γ-Al2O3. More importantly, this ceria-based catalyst showed higher sulfur tolerance than the alumina-based one. The time of complete NOx uptake was maintained even after exposing the sample to 3 g/L of SO2. The same sulfur exposure, on the other hand, eliminated the complete NOx uptake time on the alumina-based NOx storage catalysts. TEM images show no evidence of either Pt sintering or BaS phase formation during reductive de-sulfation up to 600 °C on the ceria-based catalyst, while the same process over the alumina-based catalyst resulted in both a significant increase in the average Pt cluster size and the agglomeration of a newly formed BaS phase into large crystallites. XPS results revealed the presence of about five times more residual sulfur after reductive de-sulfation at 600 °C on the alumina-based catalysts in comparison with the ceria-based ones. All of these results strongly support that, besides their superior intrinsic NOx uptake properties, ceria-based catalysts have (a) much higher sulfur tolerance and (b) excellent resistance against Pt sintering when they are compared to the widely used alumina-based catalysts.  相似文献   

7.
The measured and calculated lattice parameters, microstructures, and mechanical properties (fracture toughness and microhardness) of CeO2–ZrO2 system ceramics are investigated, using CeO2–ZrO2 solid solution powder prepared by a microwave-induced combustion process. The CeO2–ZrO2 solid solution ceramics were sintered at 1500 °C for 6 h in air; the density of all specimens was greater than 94% of the theoretical density. For Ce1−xZrxO2 (0.00  x  0.50), the measured lattice parameter is in accordance with that of Kim's doped CeO2 model. On the other hand, for x  0.50, the measured values fit Kim's doped ZrO2 model. The fracture toughness and microhardness of CeO2–ZrO2 system ceramics with various compositions were investigated with Vickers indentation. The results showed that the crack mode of CeO2–ZrO2 solid solution was Palmqvist cracks under loads of 1 kg. Generally, the fracture toughness should increase with grain size at the submicron scale. However, larger grains may lead to spontaneous transformation, which should decrease the potential toughening at room temperature. This behavior was observed in the Ce0.25Zr0.75O2 ceramic, which demonstrated a high fracture toughness that may be ascribed to two causes: (1) fine grain size and (2) transformation toughening.  相似文献   

8.
A 0.5 wt% Pd/LaCoO3, prepared by flame-spray pyrolysis (FP), was tested as catalyst for the low-temperature selective reduction of NO by H2 in the presence of excess O2. In particular, the effect of the precalcination and prereduction temperature on catalytic activity was compared with that of a similar Pd/LaCoO3 sample prepared by impregnation with a Pd solution of FP-prepared LaCoO3. The FP-made catalyst allowed full NO conversion at 150 °C, with 78% selectivity to N2, thus outperforming the catalytic behavior of the corresponding sample prepared by impregnation. The higher activity of the FP-made catalyst has been attributed to the formation of segregated Co metal particles, not present in the impregnated sample, formed during the precalcination at 800 °C, followed by reduction at 300 °C. Two reaction mechanisms can be deduced from the temperature-programmed experiments. The first of these, occurring at lower temperatures, indicates cooperation between the Pd and Co metal particles, with formation of active nitrates on cobalt, successively reduced by hydrogen spillover from Pd. The second, occurring at higher temperature, allows 50% conversion of NO, with >90% selectivity to N2, and involves N adatoms formed by dissociative NO adsorption over Pd. Prereduction at 600 °C led to a slight increase in catalytic activity, due to the formation of a PdCo alloy, which is more stable on reoxidization compared with Pd alone. Moreover, the cooperative reaction mechanism seems to be favored by the proximity of Co and Pd in metal particles.  相似文献   

9.
Hierarchically mesoporous-macroporous N-doped titania materials were fabricated by the thermal treatment of spontaneously formed hierarchical mesoporous-macroporous titanias with urea solution, in order to extend their photocatalytic applications from ultraviolet to visible-light range. The resultant meso-macroporous TiO2−xNx exhibited a bicrystalline (anatase and brookite) framework with high surface area and large porosity. The content of the doped nitrogen increased with the urea solution and the nitridation temperature, and the band gaps narrowed from 3.14 to 2.48 eV. The formation of OTiN bonds in the meso-macroporous TiO2−xNx was confirmed by the XPS and FT-IR spectra. The photocatalytic activity was evaluated by the photodegradation of methyl orange and rhodamine B under UV and visible-light irradiation, respectively. The significant improvement of photocatalytic activity for water contaminant decomposition under both UV and visible-light irradiation was observed, which is due to the incorporation of nitrogen into the titania lattice and the presence of the hierarchical meso-macroporous structure.  相似文献   

10.
11.
The effect of the ligand macrocycle (phenylporphyrin (PP) or phthalocyanine (Pc)) and of the ligand substituent (NH2 or SO3) on the catalytic activity for the electro-oxidation in a pH 11 buffer electrolyte of 2- and 4-chlorophenol (2-CP and 4-CP), 2,4- and 2,6-dichlorophenol (2,4-DCP and 2,6-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP) at glassy carbon electrodes modified with electropolymerized Ni(II) macrocycles was studied. The polyphenolic residue deposited at the electrode surface was characterized by cyclic voltammetry, impedance measurements, ex situ Fourier transform infrared spectroscopy (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). A band of aliphatic CO stretching in the IR spectrum of the fouling film produced by potential cycling in 2,4,6-TCP indicated that the aromatic ring had been broken, yielding ketones, aldehydes and/or carboxylic acids. The sulphonated Ni(II) polymers, which showed the Ni(III)/Ni(II) process in the CV, had XP spectra typical of paramagnetic Ni(II), indicating that they contained Ni(OH)2 clusters. On the contrary, the CVs of the amino Ni(II) did not show the Ni(III)/Ni(II) process at all, this process appearing only after previous activation by potential cycling, and only to a small extent. As was to be expected, the XP spectra of activated amino films corresponded to diamagnetic Ni(II), showing that the concentration of Ni(OH)2 clusters was very small. The amino films were less active than the sulpho films for the oxidation of chlorophenols, in agreement with the lower concentration of Ni(OH)2 clusters in the former films. For all electrodes the highest activity was observed for 2,4,6-TCP, since its oxidation yields a phenolic residue which is much more porous than those produced by the other CPs.  相似文献   

12.
13.
Nanoporous Co3O4 hierarchical nanoflowers have been prepared through sequential process of a hydrothermal reaction and heat treatment. These nanoflowers consisting of a great deal of Co3O4 nanofibers have bimodal pore structures and Brunauer–Emmett–Teller surface area of 34.61 m2/g. The temperature dependence curves of magnetization in zero-field-cooled and field-cooled exhibit main antiferromagnet and weak ferromagnet of Co3O4 nanoflowers at blocking temperature of 34 K, respectively. In addition, analysis of their optic properties obviously indicates red shift of absorption peaks, exhibiting quantum-confined effect and traits of semiconductor.  相似文献   

14.
Supported platinum catalysts containing 1.2% Pt loaded on Al2O3 (1.2% Pt/Al2O3) and 1.9% Pt loaded on ZrO2 (1.9% Pt/ZrO2) were prepared by incipient wetness impregnation and sol–gel method, respectively. The activity of these catalysts in the partial oxidation of ethanol (POE) was examined in a fixed-bed reactor in a temperature range between 373 and 473 K. The results indicated that significant ethanol conversion (CEtOH > 50%) was found at the low reaction temperature with a feed ratio of O2/EtOH ratio >0.75. Oxygen molecules introduced in reactant were completely consumed in POE reactions performed. H2, H2O, CO and CO2 were the major products detected. The selectivity of hydrogen (SH2) and CO (SCO) varied significantly with reaction conditions. High selectivity of hydrogen (SH2 > 95%) and low selectivity of CO (SCO  0%) were found from a mild oxidation at TR = 373 K over Pt/ZrO2. However, these two selectivities were drastically deteriorated through oxidation at high TR, high O2/EtOH ratio or over Pt/Al2O3 catalyst.  相似文献   

15.
The reduction of NO to N2/N2O in the presence of excess O2 has been successfully achieved at 70 °C using an electrochemical cell of the type, 0.1% NO, 0–10% O2, Pt | NAFION | Pt, H2O. An H+-conducting solid polymer electrolyte (SPE) plays a key role in evolving hydrogen on the Pt cathode, where the catalytic NO–H2 takes place. It was revealed that the competitive H2–O2 reaction is suppressed because the Pt surface was covered with stable nitrate (NO3) species, which blocks oxygen adsorption hereon. The inhibition of H2–O2 reaction becomes most efficient at 100 °C in agreement with the optimal operation temperature range of SPE. The reduction efficiency of NO in an excess O2 could be improved by packing 1 wt% Pt/ZSM-5 catalyst in the cathode room. The combination between the SPE cell and Pt catalysts can broadly be applied to novel low-temperature deNOx processes in a strongly oxidizing atmosphere.  相似文献   

16.
We report a simple, fast and reliable non-covalent route of functionalization of macroscopic carbon nanotubes (CNTs) surfaces based on the π-stacking of CNTs sidewall with fluorescein derivatives (i.e., amino- and isothiocyanate-). The electrochemiluminescent emission of Ru(bpy)32+ labels bearing –COOH and –NH2 side groups coupled with colorimetric and XPS measurements allowed to estimate the quantity of –NH2 and –NCS functions obtained. The evaluation of reactivity suggests that functionalized CNTs substrates, in particular those carrying –NCS groups, are suitable to covalently bind probe molecules such as proteins and oligonucleotides, thus opening up the possibility of future application in genomics and proteomics fields.  相似文献   

17.
The steam reforming of phenol towards H2 production was studied in the 650–800 °C range over a natural pre-calcined (air, 850 °C) calcite material. The effects of reaction temperature, water, hydrogen, and carbon dioxide feed concentrations, and gas hourly space velocity (GHSV, h−1) were investigated. The increase of reaction temperature in the 650–800 °C range and water feed concentration in the 40–50 vol% range were found to be beneficial for catalyst activity and H2-yield. A similar result was also obtained in the case of decreasing the GHSV from 85,000 to 30,000 h−1. The effect of concentration of carbon dioxide and hydrogen in the phenol/water feed stream was found to significantly decrease the rate of phenol steam reforming reaction. The latter was probed to be related to the reduction in the rate of water dissociation as evidenced by the significant decrease in the concentration of adsorbed bicarbonate and OH species on the surface of CaO according to in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)-CO2 adsorption experiments in the presence of water and hydrogen in the feed stream. Details of the CO2 adsorption on the CaO surface at different reaction temperatures and gas atmospheres using in situ DRIFTS and transient isothermal adsorption experiments with mass spectrometry were obtained. Bridged, bicarbonate and unidentate carbonate species were formed under CO2/H2O/He gas mixtures at 600 °C with the latter being the most populated. A substantial decrease in the surface concentration of bicarbonate and OH species was observed when the CaO surface was exposed to CO2/H2O/H2/He gas mixtures at 600 °C, result that probes for the inhibiting effect of H2 on the phenol steam reforming activity. Phenol steam reforming reaction followed by isothermal oxygen titration allowed the measurement of accumulated “carbonaceous” species formed during phenol steam reforming as a function of reaction temperature and short time on stream. An increase in the amount of “carbonaceous” species with reaction time (650–800 °C range) was evidenced, in particular at 800 °C (4.7 vs. 6.7 mg C/g solid after 5 and 20 min on stream, respectively).  相似文献   

18.
The reaction of methane-derived coke (CHx: intermediate of the reforming reaction and also a source of coke deposition) with CO2 was studied on supported Pt catalysts in relation with CO2 reforming of methane. Temperature-programmed hydrogenation (TPH) was performed to investigate the reactivity of coke deposition after the catalyst was exposed to CH4/He at 1070 K. Coke on Pt/Al2O3 could be hydrogenated around 873 K, while for Pt/ZrO2 this was above 1073 K. The results indicate that the reactivity of coke with hydrogen was higher on Pt/Al2O3 than on Pt/ZrO2, which was different from the reactivity of coke towards CO2. Thus, the reactivity of CO2 was studied and compared on these catalysts by several technics. The amount of CO evolution was measured during CO2 flow at 1070 and 875 K. Rate and amount of converted CO2 were higher on Pt/ZrO2 than on Pt/Al2O3. Pt/ZrO2 was proven to react with CO2 to produce CO and active oxygen (CO2CO+O) (probably on its oxygen defect site) more easily than Pt/Al2O3.  相似文献   

19.
20.
Vanadium-containing hexagonal mesoporous silica catalysts were tested in oxidative dehydrogenation of ethane. V-HMS catalysts (0.3–9.0 wt.% V) were prepared by impregnation with solution of vanadyl acetylacetonate, and by incorporation of vanadium in the synthesis process. The prepared catalysts achieved a different distribution of vanadium species (isolated monomeric units with tetrahedral coordination, oligomeric units connected by VOV bonds up to distorted tetrahedral coordination, two-dimensional polymeric units in octahedral coordination, and bulk vanadium oxides). The contribution deals with the understanding of the relationship between the distribution of vanadium species and their activity in ODH of ethane. It has been found that both monomeric and oligomeric vanadium species play important role in ODH of ethane. The activity correlated with the population of oligomeric tetrahedrally coordinated vanadium species, which were evidenced by the UV–vis band at 315 nm. To analyze this effect, V-HMS catalysts were characterized by means of UV–vis spectroscopy, H2-TPR and N2-adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号