首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bin Li  Xi Wei  Wei Pan   《Journal of power sources》2008,183(2):498-505
Ce0.9Gd0.1O1.95 with various Mg doping contents was synthesized by citric acid-nitrate low temperature combustion process and sintered under different conditions. The crystal structures, microstructures and electrical properties were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and ac impedance spectroscopy. Low solubility of Mg2+ in Ce0.9Gd0.1O1.95 lattice was evidenced by XRD and FESEM micrographs. The samples sintered at 1300 °C exhibited the higher total conductivity than those sintered at 1100 and 1500 °C, with the maximum value of 1.48 × 10−2 S cm−1 (measured at 600 °C) at the Mg doping content of 6 mol%, corresponding to the minimum total activation energy (Etol) of 0.84 eV (150–400 °C). The effect of Mg doping on the electrical conductivity was significant particularly at higher sintering temperatures. At the sintering temperature of 1500 °C, the addition of Mg (10 mol%) enhanced the grain boundary conductivity by over 102 times comparing with that of undoped Ce0.9Gd0.1O1.95, which may be explained by the optimization of space charge layer due to the segregation of Mg2+ to the grain boundaries.  相似文献   

2.
The synthesis, conductivity properties, area specific resistance (ASR) and thermal expansion behaviour of the layered perovskite SmBaCo2O5+d (SBCO) are investigated for use as a cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The SBCO is prepared and shows the expected orthorhombic pattern. The electrical conductivity of SBCO exhibits a metal–insulator transition at about 200 °C. The maximum conductivity is 570 S cm−1 at 200 °C and its value is higher than 170 S cm−1 over the whole temperature range investigated. Under variable oxygen partial pressure SBCO is found to be a p-type conductor. The ASR of a composite cathode (50 wt% SBCO and 50 wt% Ce0.9Gd0.1O2−d, SBCO:50) on a Ce0.9Gd0.1O2−d (CGO91) electrolyte is 0.05 Ω cm2 at 700 °C. An abrupt increase in thermal expansion is observed in the vicinity of 320 °C and is ascribed to the generation of oxygen vacancies. The coefficients of thermal expansion (CTE) of SBCO is 19.7 and 20.0 × 10−6 K−1 at 600 and 700 °C, respectively. By contrast, CTE values for SBCO:50 are 12.3, 12.5 and 12.7 × 10−6 K−1 at 500, 600 and 700 °C, that is, very similar to the value of the CGO91 electrolyte.  相似文献   

3.
Chromium-deficient Nd0.75Ca0.25Cr1−xO3−δ (0.02 ≤ x ≤ 0.06) oxides are synthesized and assessed as a novel ceramic interconnect for solid oxide fuel cells (SOFCs). At room temperature, all the samples present single perovskite phase after sintering at 1600 °C for 10 h in air. Cr-deficiency significantly improves the electrical conductivity of Nd0.75Ca0.25Cr1−xO3−δ oxides. No structural transformation occurs in the Nd0.75Ca0.25Cr1−xO3−δ oxides in the temperature range studied. Among all the samples, the Nd0.75Ca0.25Cr0.98O3−δ sample with a relative density of 96.3% exhibits the best electrical conductivity of 39.0 and 1.6 S cm−1 at 850 °C in air and hydrogen, respectively. The thermal expansion coefficient of Nd0.75Ca0.25Cr0.98O3−δ sample is 9.29 × 10−6 K−1 in the temperature range from 30 to 1000 °C in air, which is close to that of 8 mol% yttria stabilized zirconia electrolyte (10.3 × 10−6 K−1) and other cell components. The results indicate that Nd0.75Ca0.25Cr0.98O3−δ is a potential interconnect material for SOFCs.  相似文献   

4.
La0.3Sr0.7FeO3-δ (LSF)/CeO2 cathode supported Ce0.8Sm0.2O2-δ (SDC) electrolyte was prepared by a simple multilayer tape casting and co-firing method. SDC electrolyte slurry and LSF/CeO2 cathode slurry were optimized and the green bi-layer tapes were co-fired at different temperature. Phase characterizations and microstructures of electrolyte and cathode were studied by X-ray diffraction (XRD) and Scan Electronic Microscopy (SEM). No additional phase peak line was observed in electrolyte and cathode support when the sintering temperature lower was than 1400 °C. The electrolytes were extremely dense with the thickness of about 20 μm. The cathode support was porous with electrical conductivity of about 4.21 S/cm at 750 °C. With Ni/SDC as anode, Open Current Voltage and maximum power density reached 0.61 V and 233 mW cm−2 at 750 °C, respectively.  相似文献   

5.
Cement-based composites is a promising type of structural material, which has prospective applications in relieving the urban heat island effect in summer and melted snow with low energy consumption. However, the major drawbacks of cement-based composites are heterogeneity, porosity, and brittleness. Porosity and microcrack have considerable influence on the thermoelectric of cement-based composites applied in large-scale concrete structures in future. This paper studied in detail the effect of porosity and crack on thermoelectric properties of the cement-based composite. The proper pores and cracks in the cement matrix are advantageous to enhance the Seebeck effect, but meanwhile it also reduces the electrical conductivity. So combined with Seebeck effect, electrical conductivity and other factors, it can obtain a comparatively low electrical conductivity (0.063S cm−1) of expanded graphite/carbon fiber reinforced cement-based composites (EG-CFRC), but EG-CFRC manifests the maximum thermoelectric figure of merit (ZT) has reached 2.22 × 10−7 when the porosity is 3.90%. With different porosity, the Seebeck effect of prepared EG-CFRC was strengthened when the crack existed. The effect is most pronounced by a factor of 2 when the porosity is 28.90%. Therefore, based on stabilizing the conductivity, the crack is fittingly made to have a good effect on the Seebeck coefficient.  相似文献   

6.
ZnO-doped BaZr0.85Y0.15O3−δ perovskite oxide sintered at 1500 °C has bulk conductivity of the order of 10−2 S cm−1 above 650 °C, which makes it an attractive proton-conducting electrolyte for intermediate-temperature solid oxide fuel cells. The structure, morphology and electrical conductivity of the electrolyte vary with sintering temperature. Optimal electrochemical performance is achieved when the sintering temperature is about 1500 °C. Cathode-supported electrolyte assemblies were prepared using spin coating technique. Thin film electrolytes were shown to be dense using SEM and EDX analyses.  相似文献   

7.
LiFePO4/polyacenes (PAS) composite is synthesized by iron oxyhydroxide as a new raw material and phenol–formaldehyde resin as both reducing agent and carbon source. The mechanism of the reaction is outlined by the analysis of XRD, FTIR as well as TG/DSC. The results show that the formation of LiFePO4 is started at 300 °C, and above 550 °C, the product can be mainly ascribed to olivine LiFePO4. The electrochemical properties of the synthesized composites are investigated by charge–discharge tests. It is found that the prepared sample at 750 °C (S750) has a better electrochemical performance than samples prepared at other temperatures. A discharge capacity of 158 mAh g−1 is delivered at 0.2 C. Under high discharge rate of 10 C, a discharge capacity of 145 mAh g−1 and good capacity retention of 93% after 800 cycles are achieved. The morphology of S750 and PAS distribution in it are investigated by SEM and TEM.  相似文献   

8.
CeO2–TiO2–ZrO2 thin films were prepared using the sol–gel process and deposited on glass and ITO-coated glass substrates via dip-coating technique. The samples were heat treated between 100 and 500 °C. The heat treatment effects on the electrochromic performances of the films were determined by means of cyclic voltammetry measurements. The structural behavior of the film was characterized by atomic force microscopy and X-ray diffraction. Refractive index, extinction coefficient, and thickness of the films were determined in the 350–1000 nm wavelength, using nkd spectrophotometry analysis.Heat treatment temperature affects the electrochromic, optical, and structural properties of the film. The charge density of the samples increased from 8.8 to 14.8 mC/cm2, with increasing heat-treatment temperatures from 100 to 500 °C. It was determined that the highest ratio between anodic and cathodic charge takes place with increase of temperature up to 500 °C.  相似文献   

9.
The physicochemical properties of molten alkali bis(trifluoromethylsulfonyl)amide, MTFSI (M = Li, K, Cs), mixture (xLiTFSI = 0.20, xKTFSI = 0.10, xCsTFSI = 0.70) were studied to develop a new rechargeable lithium battery operating at intermediate temperature (100–180 °C). The viscosity and ionic conductivity of this melt at 150 °C are 87.2 cP and 14.2 mS cm−1, respectively. The cyclic voltammetry revealed that the electrochemical window at 150 °C is as wide as 5.0 V, and that the electrochemical deposition/dissolution of lithium metal occurs at the cathode limit. A Li/MTFSI (M = Li, K, Cs)/LiFePO4 cell showed an excellent cycle performance at a constant current rate of C/10 at 150 °C; 95% of the initial discharge capacity was maintained after 50 cycles. Except for the initial few cycles, the coulombic efficiencies were approximately 100% for all the cycles, indicating the stabilities of the molten MTFSI mixture and all the electrode materials.  相似文献   

10.
Cathode materials consisting of Pr1−xSrxCo0.8Fe0.2O3−δ (x = 0.2–0.6) were prepared by the sol–gel process for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The samples had an orthorhombic perovskite structure. The electrical conductivities were all higher than 279 S cm−1. The highest conductivity, 1040 S cm−1, was found at 300 °C for the composition x = 0.4. Symmetrical cathodes made of Pr0.6Sr0.4Co0.8Fe0.2O3−δ (PSCF)–Ce0.85Gd0.15O1.925 (50:50 by weight) composite powders were screen-printed on GDC electrolyte pellets. The area specific resistance value for the PSCF–GDC cathode was as low as 0.046 Ω cm2 at 800 °C. The maximum power densities of a cell using the PSCF–GDC cathode were 520 mW cm−2, 435 mW cm−2 and 303 mW cm−2 at 800 °C, 750 °C and 700 °C, respectively.  相似文献   

11.
In this work optical properties of Ta2O5 thin films with respect to heat treatment temperature were investigated. Ta2O5 thin films were prepared by sol–gel process using dip-coated method with a constant speed of 107 mm/min. Optical properties have been calculated from optical transmission measurements as a function of heat treatment temperature. The refractive indices and absorption coefficients were affected by heat treatment. The refractive index at λ=550 nm increased from 1.84 to 2.04 and absorption coefficient increased from 241 to 5668 cm−1 when heat treatment temperature increased from 100°C to 500°C. The thickness of the film decreased from 272 to 190 nm and their optical band gap decreased from 3.68±0.09 eV to 3.51±0.08 eV for the film heated from 100°C to 500°C.  相似文献   

12.
Solving the contact resistance and cathode-chromium-poisoning problems associated with the application of ferritic stainless steel as solid oxide fuel cell interconnects is the objective of numerous current research efforts. In this work, the application of electrodeposited Ni/LaCrO3 composites for AISI 430 stainless steel as protective/conductive coatings has been studied, with emphasis on the oxidation behavior, scale structure and electronic conductivity of these coatings. The oxidation tests were performed at 800 °C in air for up to 2040 h. The results showed that the scale is a double layer consisting of a particle filled chromia-rich subscale and an outer Ni/Fe-rich spinel together with NiO. The addition of LaCrO3 particles greatly enhances the high-temperature oxidation resistance of Ni-coated ferritic stainless steel. Cavities, which form beneath the scale for uncoated steels as a result of cation outward diffusion, reduce the actual contact area between the scale and the alloy resulting in a high area specific resistance (ASR) as well as scale spallation. Excellent, stable ASR (0.005 Ω cm2 after 400 h) was achieved with the application of Ni/LaCrO3 coatings.  相似文献   

13.
The composite cathode system is examined for suitability on a Ce0.9Gd0.1O2−δ electrolyte based solid oxide fuel cell at intermediate temperatures (500–700 °C). The cathode is characterized for electronic conductivity and area specific charge transfer resistance. This cathode system is chosen for its excellent thermal expansion match to the electrolyte, its relatively high conductivity (115 S cm−1 at 700 °C), and its low activation energy for oxygen reduction (99 kJ mol−1). It is found that the decrease of sintering temperature of the composite cathode system produces a significant decrease in charge transfer resistances to as low as 0.25 Ω cm2. The conductivity of the cathode systems is between 40 and 88 S cm−1 for open porosities of 30–40%.  相似文献   

14.
A series of amino-containing sulfonated poly(aryl ether ketone)/4,4′-diglycidyl(biphenyl) epoxy resin (DGBP) composite membranes for proton exchange membranes fuel cells (PEMFCs) are prepared by solution blending and casting. The reaction kinetics and the effects of introduction of DGBP content on the properties of the composite membranes are thoroughly investigated. The crosslinked composite membranes after treatment at either 120 °C or 200 °C have improved oxidative and dimensional stability than those without crosslinking. Despite the fact that crosslinked membranes generally have lower proton conductivity in comparison with the original ones, the proton conductivities of the membranes treated at 120 °C are above 2.22 × 10−2 S cm−1 at room temperature and 9.42 × 10−2 S cm−1 at 100 °C. Even for the samples treated at 200 °C, their proton conductivities are still higher than 1.26 × 10−2 S cm−1 at room temperature and higher than 8.67 × 10−2 S cm−1 at 100 °C, which are well satisfied with elementary requirement of fuel cells. In addition, all the evaluated membranes have low methanol permeability. For example, the methanol permeability of AP6FSPEEK/DGBP1 cured at 200 °C is 0.33 × 10−6 cm2 s−1, which is an order magnitude lower than Nafion 117. Therefore, these novel crosslinked composite membranes could be potential usage in fuel cells.  相似文献   

15.
In this paper thermal properties for materials typically used in the proton exchange membrane fuel cell (PEMFC) are reported. Thermal conductivities of Nafion membranes were measured ex situ at 20 °C to be 0.177 ± 0.008 and 0.254 ± 0.016 W K−1 m−1 for dry and maximally wetted membranes respectively. This paper also presents a methodology to determine the thermal conductivity of compressible materials as a function of applied load. This technique was used to measure the thermal conductivity of an uncoated SolviCore porous transport layer (PTL) at various compaction pressures. For the dry PTL at 4.6, 9.3 and 13.9 bar compaction pressures, the thermal conductivity was found to be 0.27, 0.36 and 0.40 W K−1 m−1 respectively and the thermal contact resistivity to the apparatus was determined to be 2.1, 1.8 and 1.1 × 10−4 m2 K W−1, respectively. It was shown that the thermal contact resistance between two PTLs is negligible compared to the apparatus’ thermal contact resistivity. For a humidified PTL, the thermal conductivity increases by up to 70% due to a residual liquid saturation of 25%.  相似文献   

16.
We have developed a Co-free solid oxide fuel cell (SOFC) based upon Fe mixed oxides that gives an extraordinary performance in test-cells with H2 as fuel. As cathode material, the perovskite Sr0.9K0.1FeO3−δ (SKFO) has been selected since it has an excellent ionic and electronic conductivity and long-term stability under oxidizing conditions; the characterization of this material included X-ray diffraction (XRD), thermal analysis, scanning microscopy and conductivity measurements. The electrodes were supported on a 300-μm thick pellet of the electrolyte La0.8Sr0.2Ga0.83Mg0.17O3−δ (LSGM) with Sr2MgMoO6 as the anode and SKFO as the cathode. The test cells gave a maximum power density of 680 mW cm−2 at 800°C and 850 mW cm−2 at 850 °C, with pure H2 as fuel. The electronic conductivity shows a change of regime at T ≈ 350 °C that could correspond to the phase transition from tetragonal to cubic symmetry. The high-temperature regime is characterized by a metallic-like behavior. At 800 °C the crystal structure contains 0.20(1) oxygen vacancies per formula unit randomly distributed over the oxygen sites (if a cubic symmetry is assumed). The presence of disordered vacancies could account, by itself, for the oxide-ion conductivity that is required for the mass transport across the cathode. The result is a competitive cathode material containing no cobalt that meets the target for the intermediate-temperature SOFC.  相似文献   

17.
A dense BaZr0.1Ce0.7Y0.2O3−δ (BZCY) electrolyte is fabricated on a porous anode by in situ drop-coating method which can lead to extremely thin electrolyte membrane (10 μm in thickness). The layered perovskite structure oxide PrBaCo2O5+δ (PBCO) is synthesized by auto ignition process and initially examined as a cathode for proton-conducting IT-SOFCs. The electrical conductivity of PrBaCo2O5+δ (PBCO) reaches the general required value for the electrical conductivity of cathode absolutely. The single cell, consisting of PrBaCo2O5+δ (PBCO)/BaZr0.1Ce0.7Y0.2O3−δ (BZCY)/NiO-BaZr0.1Ce0.7Y0.2O3−δ (BZCY) structure, is assembled and tested from 600 to 700 °C with humidified hydrogen (3% H2O) as the fuel and air as the oxidant. An open-circuit potential of 1.01 V and a maximum power density of 545 mW cm−2 at 700 °C are obtained for the single cell, and a low polarization resistance of the electrodes of 0.15 Ω cm2 is achieved at 700 °C.  相似文献   

18.
In this work, MgH2–SiC–Ni was prepared by magneto-mechanical milling in hydrogen atmosphere. Scanning electron microscope mapping images showed a homogeneous dispersion of both Ni and SiC among MgH2 particles. Based on the differential scanning calorimetry traces, the temperature of desorption is reduced by doping MgH2 with SiC and Ni. Hydrogen absorption/desorption behaviour of the samples was investigated by Sievert's method at 300 °C, and the results showed that both capacity and kinetics were improved by adding SiC and Ni. The hydrogen desorption kinetic investigation indicated that for pure MgH2, the rate-determining step is surface controlled and recombination, while for the MgH2–SiC–Ni sample it is controlled as described by the Johnson–Mehl–Avrami 3D model (JMA 3D).  相似文献   

19.
Aiming at developing exhaust gas-driven automobile air conditioners, two types of systems varying in heat carriers were preliminarily designed. A new hydride pair LaNi4.61Mn0.26Al0.13/La0.6Y0.4Ni4.8Mn0.2 was developed working at 120–200 °C/20–50 °C/−10–0 °C. P-C isotherms and reaction kinetics were tested. Reaction enthalpy, entropy and theoretical cycling coefficient of performance (COP) were deducted from Van’t-Hoff diagram. Test results showed that the hydride pair has flat plateau slopes, fast reaction dynamics and small hystereses; the reaction enthalpy of the refrigeration hydride is −27.1 kJ/mol H2 and system theoretical COP is 0.711. Mean particle sizes during cycles were verified to be an intrinsic property affected by constitution, heat treatment and cycle numbers rather than initial grain sizes. Based on this work pair, cylindrical reactors were designed and a function proving metal hydride intermittent refrigeration system was constructed with heat conducting oil as heat source and water as heat sink. The reactor equivalent thermal conductivity is merely 1.3 W/(m K), which still has not meet practical requirement. Intermittent refrigeration cycles were achieved and the average cooling power is 84.6 W at 150 °C/30 °C/0 °C with COP being 0.26. The regulations of cycling performance and minimum refrigeration temperature (MRT) were determined by altering heat source temperature. Results showed that cooling power and system COP increase while MRT decreases with the growth of heat source temperature. This study develops a new hydride pair and confirms its application in automobile refrigeration systems, while their heat transfer properties still need to be improved for better performance.  相似文献   

20.
We develop amorphous silicon (a-Si:H)-based solar cells by plasma-enhanced chemical vapor deposition (PECVD) at deposition temperatures of Ts=75°C and 100°C, compatible with low-cost plastic substrates. The structural and electronic properties of low-temperature standard PECVD a-Si:H, both doped and undoped, prevent the photovoltaic application of this material. In this paper, we demonstrate how to achieve device-quality a-Si:H even at low deposition temperatures. In the first part, we show the dependence of structural and carrier transport properties on the deposition temperature. The sub-band gap absorption coefficient and the Urbach energy increase when the deposition temperature declines from Ts=150°C to 50°C, the conductivity of doped layers and mobility-lifetime product of intrinsic a-Si:H drop drastically. Therefore, in the second part we investigate the impact of increasing hydrogen dilution of the feedstock gases on the properties of low-temperature a-Si:H. We restore n-type a-Si : H device-quality conductivity while the p-type a-Si:H conductivity is still inferior. For undoped layers, we depict the hole diffusion length, the mobility-lifetime product for electrons, the Urbach energy, and sub-band gap absorption coefficient as a function of the hydrogen dilution ratio. We incorporate these optimized materials in solar cell structures of single and multilayer design and record initial efficiencies of η=6.0% at a deposition temperature of Ts=100°C, and η=3.8% at Ts=75°C. For prospective opaque polymer substrates we develop, in addition to our conventional pin cells, devices in nip design with similar performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号