首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
基于混合仿真系统的离散动态模型,分析了混合仿真系统稳定的判据.在一个典型的一阶电路中,推导了混合仿真系统无直流稳态误差的条件,并设计了使混合仿真结果与真实解一致的接口算法.分析了步长和接口延时对混合仿真结果相移的影响,推导了相移的近似表达式.仿真步长等于接口延时的2倍时相移最小.通过仿真比较了不同接口算法和积分算法的效果,并验证了理论分析得到的结论.  相似文献   

2.
功率连接型数字物理混合仿真结合了实时数字仿真和动态物理模拟的优点,是未来研究新能源发电和储能设备物理特性和接入技术的关键手段。接口算法是功率连接型混合仿真系统的关键技术。文中从稳定性和精确性2个方面,研究并建立了功率连接型混合仿真系统的接口特性。对阻抗阻尼接口进行了化简,分析了简化阻尼阻抗接口和理想变压器接口的稳定性。分析了简化阻尼阻抗接口对数字仿真系统精确性的影响,得出在阻抗匹配时阻尼阻抗法不受接口延迟影响的透明特性。针对物理模拟系统无源和有源2种情况,分析了简化阻尼阻抗接口和理想变压器接口对物理被试系统精确性的影响,得出理想变压器接口带有源负载能力优于阻尼阻抗接口的结论。根据理论分析结果,给出了在各种情况下选择接口算法的原则。  相似文献   

3.
针对功率接口引起的稳定性和精确性问题,提出了一种适用于基于模块化多电平换流器的高压直流输电(MMC-HVDC)系统数字物理混合仿真的改进阻尼阻抗接口算法。根据MMC中功率器件断态电阻通常远大于通态电阻的特性,简化了阻抗计算过程,并采用绝对稳定且精度较高的梯形积分法对子模块电容进行离散化,实现了MMC正常运行工况下阻尼阻抗接口算法阻抗的高效匹配;结合MMC闭锁运行时的特点,提出了其闭锁时阻抗的实时匹配方法;基于傅里叶分解重构电压信号的方法实现了接口延时补偿控制,以提高系统的仿真精度。在PSCAD/EMTDC中建立了基于所提接口算法的双端MMC-HVDC数字仿真系统,对不同运行工况进行了仿真,结果表明改进阻尼阻抗接口算法可以保证混合仿真系统在不同扰动下稳定运行,且有功功率最大相对误差小于1.5%,具有优越的稳定性和精确性性能。  相似文献   

4.
基于离散动态模型,对电力一次系统数字物理混合仿真的稳定性进行了研究。将混合仿真理解为一种数值方法,其稳定性由延时系统和离散动态模型的稳定性决定。基于延时微分方程组的理论,分析了延时系统的稳定性及离散动态模型的稳定性,并推导了接口稳定性的条件。通过LC二阶电路的混合仿真实验,验证了理论分析的结论。  相似文献   

5.
变电站数字物理混合仿真培训系统的一次系统采用计算机软件实时仿真(采用真实、不带电设备);二次系统采用与电力生产现场相同的真实变电站综合自动化设备。在软件仿真的一次系统和二次系统之间用信号转换装置和功率放大器相连接,一次设备和二次设备之间经电缆接通二次回路,实物与软件结合使培训更接近现场实际,培训功能更强大。  相似文献   

6.
董海波 《广东电力》2007,20(8):5-8,18
采用先进的数字仿真系统对大规模的交直流混合电力系统进行研究是一个有效的途径.为此,介绍了我国交直流混合电力系统数字仿真的发展,以及几种常用的仿真软件,包括离线仿真的MATLAB,PSCAD/EMTDC和NETOMAC,实时仿真的RTDS和HYPERSIM等,并分别对它们的交直流混合电力系统仿真能力进行了探讨和比较,提出了用户选取时应注意的问题.  相似文献   

7.
提出了一种新的含UPFC装置的电力系统动态混合仿真接口算法,算法中对UPFC采用动态相量建模,对电力系统网络则采用成熟的机电暂态仿真。仿真中UPFC并联侧采用定交流母线电压控制和定直流电容电压控制,串联侧采用定线路潮流控制。文中推导了UPFC的动态相量模型,讨论了与网络机电暂态模型的接口算法。研究分析和算例仿真表明:使用动态相量建模可精确地仿真UPFC的电磁暂态(EMT)过程,且仿真速度快;文中所提混合仿真方案能保证较快的仿真速度和优良的仿真精度,具有较好的收敛性,且可用于含UPFC等FACTS装置的系统发生不对称故障时的暂态稳定分析。  相似文献   

8.
电力系统电磁暂态一机电暂态混合仿真接口实现   总被引:4,自引:1,他引:4  
作者在关于电力系统电磁暂态-机电暂态混合仿真研究的系列报告之一中曾提出了一种混合仿真的接口方法.在该混合仿真研究的系列报告之二中,作者主要针对电磁暂态-机电暂态仿真接口实现过程中由于机电暂态网络正、负序阻抗不相等引起的机电暂态网络等值导纳矩阵不对称的问题,提出了"节点分裂接口算法",并提出了一种戴维南等值简化法,用于快速计算节点分裂法需要的相关变量.  相似文献   

9.
针对微电网的推广应用还面临着诸多技术难题的问题,将电力系统数字仿真与物理模拟各自的优点与不足结合起来,充分发挥各自优势便可形成数模综合仿真模型,该模型将在微电网技术研究中发挥重大的作用。数模综合仿真接口是数模综合仿真系统的核心部件,而接口算法的选取是数模综合仿真接口设计的基础。在总结现有算法的基础上重点分析了理想变压器模型的稳定性,提出加强稳定性的有效措施及不稳定情况的处理方案。最后,通过算例仿真验证了各措施的有效性。  相似文献   

10.
电力系统电磁暂态-机电暂态混合仿真接口原理   总被引:12,自引:12,他引:12  
在电力系统仿真中,如果能在一次仿真过程中同时实现大规模电网的机电暂态仿真与部分电网的详细电磁暂态仿真,那么对详细分析系统特性,特别是直流输电、FACTS元件等的特性具有重要的理论价值和现实意义。针对这一问题,笔者在比较电磁暂态仿真和机电暂态仿真模型与方法的基础上提出了一种电力系统电磁暂态-机电暂态混合仿真的通用接口方法。该方法在我国实际电网中的成功应用证明了其有效性和实用性。笔者将分三个系列进行相关讨论,此文为系列报告之一,主要提出了电磁暂态-机电暂态混合仿真的实现原理及接口模型,如接口等值电路的设计、接口交换时序的设计等。  相似文献   

11.
基于离散动态模型,对电力一次系统数字物理混合仿真的收敛性和准确性进行了研究。将混合仿真理解为一种数值方法,通过对离散动态模型的误差分析,得到了混合仿真的收敛性结论。混合仿真的准确性主要由混合仿真所收敛到的延时系统决定。推导了交流稳态下混合仿真的理论解和接口的功率折算关系,并通过混合仿真实验验证了理论分析的结论。  相似文献   

12.
数字-物理混合仿真结合了数字仿真与物理实验的优势,为复杂电力电子设备的理论研究和工程设计过程提供了便利。然而数字-物理接口的存在可能导致数字-物理混合仿真结果精度降低甚至变得不稳定。为解决数字-物理接口引起的失稳问题,文中在传统阻尼阻抗接口模型的基础上,针对应用于柔性直流输电的全桥型模块化多电平换流器(MMC),提出一种接口补偿阻抗设计方法。首先,全面充分地考虑了接口引入的延时、扰动对系统稳定性和精确性的影响,根据MMC的运行特点,设计了结构简单的RLC串联结构补偿阻抗,使之在不同运行工况下均可确保系统稳定、高精度运行。在此基础上,搭建了基于全桥型MMC直流背靠背的数字-物理混合仿真实验平台,利用数字侧模拟电压暂降、短路等故障,而物理侧全桥型MMC实现故障穿越过程。实验结果表明,所提接口补偿阻抗设计方案保证了系统在各种工况下的有效性。  相似文献   

13.
对现有的功率硬件在环仿真接口算法进行了综述,基于理想变压器模型(Ideal Transformer Model,ITM)讨论了算法的稳定性和改进措施,通过无接口算法、无补偿电感ITM接口算法、添加补偿电感ITM接口算法三种情况的仿真试验,对比分析现有的功率放大器对仿真稳定性的影响,验证了改进接口算法能够提高功率硬件在环仿真系统的精确性和稳定性。  相似文献   

14.
作为功率硬件在环(PHIL)仿真中连接数字侧和物理侧仿真的互联装置,功率接口对PHIL仿真系统的稳定性起决定性作用。物理侧负载扰动所引起的直流电压波动是影响功率接口的稳定运行的关键问题之一。针对这一问题,为了提高PHIL仿真系统稳定性,考虑控制时滞,提出一种基于直流输出电流前馈的直流电压改进控制策略,并给出了其前馈系数的参数设计方法。根据变流器交直流侧有功功率平衡关系,利用小信号分析方法,建立了功率接口交直流统一模型,通过该模型分析并证明了所提控制策略在负载小扰动情况下抑制直流电压波动的有效性。提出一种直流电容参数计算方法,并证明前馈控制可以有效地减少直流电容。最后,仿真和实验验证了所提方法的有效性。  相似文献   

15.
电力一次系统数字物理混合仿真是传统混合仿真技术的新发展,可以对功率设备进行仿真测试,是一种先进的仿真技术。这种新技术能充分发挥混合仿真的优点,不仅可以适应新能源革命下对各种新电力设备进行测试和研究的需求,还可以扩展混合仿真在电力系统研究中的传统应用,具有重要的研究价值和广泛的应用前景。从混合仿真的结构出发,研究了数字、物理两侧交互工作的特点和规律,提出了"帧—步长时序"的原理和框架。基于该时序,研究了混合仿真接口建模中的时间协调关系,并建立了适用于一般混合仿真系统的离散动态模型。  相似文献   

16.
数字物理混合仿真结合了数字仿真和物理模拟的优点,是仿真发展的新方向.接口算法是混合仿真中的关键问题.分析了混合仿真系统的结构,对串行时序和并行时序进行了比较.综述了已有的5种接口方法,并推导出其中4种方法的统一形式.最后建立了混合仿真系统的离散动态模型,该模型为混合仿真系统的理论分析提供了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号