首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
采用MA-FAPAS工艺,借助中间层TiAl的燃烧反应放热,原位合成了梯度金属陶瓷(TiC)pNi和金属间化合物TiAl,并同步完成了(TiC)pNi/TiAl/Ti的扩散连接,研究了在外加温度场、电场和应力场耦合作用下连接结构的形成机制。利用FE-SEM、TEM和XRD等手段对各层及连接界面的微观结构和相组成,以及电场作用下各连接界面元素扩散特征进行分析;采用显微硬度压痕法对连接界面的韧性进行分析;采用剪切法、冷淬法和有限元法对界面结合强度和残余应力分布进行分析计算。结果表明,各燃烧层均发生充分反应并形成了良好的冶金结合,连接界面处存在强烈的元素交互扩散;连接界面具有较强的抗剥离和抗剪切强度,(TiC)PNi/TiAl界面为接头的薄弱环节。  相似文献   

2.
电场激活原位合成(TiC)pNi/TiAl/Ti功能梯度材料   总被引:1,自引:0,他引:1  
运用电场激活压力辅助合成(FAPAS)和原位合成技术制备了(TiC)pNi/TiAl/Ti功能梯度材料,研究了电场对材料合成及层界面扩散连接的作用。采用光学显微镜、扫描电子显微镜、能谱和X射线衍射仪分析了梯度材料各层及界面微观组织、相组成和元素分布。结果表明,电场的施加以及TiAl的燃烧反应是合成材料的关键;经原位合成的TiC颗粒均匀细小;金属陶瓷层/TiAl/Ti基板的界面区产生了成分的互扩散并形成了良好的冶金结合。钛板到金属陶瓷层的显微硬度呈梯度变化且具有较好的抗热震性。  相似文献   

3.
运用电场激活压力辅助合成(FAPAS)和原位合成技术制备了TiC-Ni/TAl/Ti功能梯度材料,研究了电场对材料合成及层界面扩散连接的作用。采用光学显微镜、扫描电镜、X射线能谱和X射线衍射仪分析了材料各层及界面的微观组织、相组成和元素分布。结果表明,电场的施加以及TiAl的燃烧反应是合成材料的关键。原位反应合成的TiC颗粒分布均匀、颗粒细小。TiC-Ni/TiAl/Ti功能梯度材料的界面区产生成分的互扩散,并形成了良好的冶金结合。从钛板到金属陶瓷层的显微硬度呈梯度变化。  相似文献   

4.
采用电场激活压力辅助燃烧合成工艺(FAPAS)制备(TiB2)pNi/Ni3Al/M功能梯度材料。研究电场作用下Ni3Al的原位燃烧合成及其与金属和复合材料层(TiB2)pNi的同步扩散连接机理,探讨电场对Ni3Al与不同金属扩散连接界面结构和冶金特征的影响,并对梯度材料的界面微观组织、相组成和力学性能进行表征。结果表明:在外加电场和应力场的作用下,镍粉和铝粉发生剧烈反应生成细小致密的Ni3Al金属间化合物,产生的化学热有助于促进界面物质迁移,这是形成连接的关键;梯度材料的各层之间完全连接,抗热冲击性能良好,断面微观硬度呈梯度分布。  相似文献   

5.
采用Ti/Nb复合中间层对TiAl与镍基高温合金(GH99)进行扩散连接.采用扫描电镜、电子探针和X射线衍射等手段对连接接头的生成相及界面组织结构进行分析,采用抗剪强度测试对接头的连接强度进行评价.结果表明,GH99/Nb/Ti/TiAl的典型界面结构为GH99/(Ni,Cr)ss/Ni3Nb/Ni6Nb7/Nb/(Ti,Nb)ss/α-Ti+(Ti,Nb)ss/Ti3Al/TiAl.当连接温度为900℃,连接时间为30 min,连接压力为20 MPa时,所得接头抗剪强度最高为273.8 MPa.随着连接温度的升高,界面组织结构及反应层厚度发生变化.当连接温度T>900℃时,界面处生成对接头强度有不利影响的Ni6Nb7反应层;根据试验结果,进一步分析了各反应层的形成过程,揭示了GH99/Nb和Nb/Ti/TiAl的界面扩散反应机制.  相似文献   

6.
TiAl合金与镍基高温合金的扩散连接   总被引:2,自引:2,他引:0       下载免费PDF全文
采用钛为中间层,对TiAl合金与镍基高温合金(GH99)进了扩散连接.研究了扩散连接接头的界面结构和连接温度对界面结构及连接性能的影响,并对连接界面反应层的形成机制进行探讨.结果表明,GH99/Ti/TiAl的界面结构为:GH99/(Ni,Cr)ss/富Ti-(Ni,Cr)ss/TiNi/Ti2Ni/α-Ti+Ti2Ni/Ti(Al)ss/TiAl+Ti3Al/TiAl;随着连接温度的升高,各反应层厚度增加,接头的抗剪强度先增加后减小;在连接温度1 173 K,连接时间30 min,连接压力20 MPa时,抗剪强度最高为260.7 MPa.  相似文献   

7.
本试验采用电场激活扩散连接技术(FADB)实现了Ti/Ni的扩散连接。研究了Ti/Ni两种材料发生界面扩散反应时新相的生成规律及其对连接强度的影响。利用扫描电子显微镜及能谱仪观察和分析了扩散层的显微组织、相组成和界面元素分布。采用万能试验机对扩散层的抗剪切性能进行了测试。研究结果表明,在电场作用下,Ti与Ni通过固相扩散形成了良好的冶金结合界面,界面处金属间化合物的生成次序依次为Ni3Ti、Ni Ti2、Ni Ti。当扩散温度≥750℃时,Ti表现出超塑性和良好的扩散性,促使扩散层中的Ni3Ti转变成富钛层,该富钛层的形成有利于接头强度的提高。界面的剪切强度随着电流的增大而增大,当电流为930~1200 A时,界面的剪切强度可达90.54 MPa。  相似文献   

8.
采用电场激活固相连接工艺(FADB)实现了AZ31B镁合金与铝粉的固相扩散,观察研究了界面处扩散溶解层的微观形貌和相组成以及界面处元素交互扩散分布情况,测试了扩散溶解层的表面硬度和耐腐蚀性,探讨电场对AZ31B/Al固相扩散的影响.研究结果表明,在FADB条件下,AZ31B/Al结合界面处形成的扩散溶解层由均匀共晶层-溶解过渡层和胞晶区构成;外加电场通过降低界面处生成物的激活能,促进了Mg-Al间的扩散反应,所形成的锯齿状结构有利于提高界面连接强度;试样表面的平均硬度及耐腐蚀性能均高于镁合金母材.  相似文献   

9.
以Ag-Cu-Ti-TiC复合钎料为中间层,在适当的工艺参数下真空钎焊Cf/SiC复合材料与Ti合金.利用SEM、EDS和XRD分析接头的微观组织结构,利用剪切实验检测接头的力学性能.结果表明:钎焊时,借助液态钎料,复合钎料中的Ti与Cf/SiC复合材料反应,在Cf/SiC复合材料与连接层界面形成Ti-Si-C、Ti-Si和少量TiC化合物的混合反应层;复合钎料中的Cu与Ti合金中的Ti发生互扩散,在连接层与Ti合金界面形成不同成分的Cu-Ti化合物过渡层;钎焊后,形成TiC颗粒强化的致密复合连接层,TiC的加入降低了接头的残余热应力,Cf/SiC/Ag-Cu-Ti-TiC/TC4接头的剪切强度明显高于Cf/SiC/Ag-Cu-Ti/TC4接头的.  相似文献   

10.
TiAl/40Cr扩散连接接头的界面结构及相成长   总被引:2,自引:4,他引:2  
在 1173~ 1373K、0 .3~ 5 .4ks的接合条件下对TiAl金属间化合物与 4 0Cr钢进行了真空扩散连接。采用扫描电镜 (SEM )、电子探针微区成分分析 (EPMA)、X射线衍射分析 (XRD)等方法确定了反应相的种类和界面结构。研究结果表明 ,在 1373K的接合温度下 ,TiAl/ 4 0Cr接头生成了TiC ,Ti3 Al,FeAl和FeAl2 4种反应相 ,形成了 3个反应层 ,界面结构为TiAl/Ti3 Al+FeAl+FeAl2 /TiC/脱碳层 / 4 0Cr钢。界面总反应层的厚度随接合温度和接合时间按抛物线方程成长 ,成长的活化能Q为 2 11.9kJ/mol,成长常数k0 为 4 .6× 10 -5m2 /s。当脆性反应层厚度为 3μm时 ,TiAl/ 4 0Cr钢接头的室温拉伸强度达到 183MPa的最大值。  相似文献   

11.
1 INTRODUCTIONInrecentyears,considerableinteresthasbeengiv entoTiAlintermetallicsbecauseofitsuniquepropertiessuchaslowdensity ,goo  相似文献   

12.
SiC/TiAl扩散连接接头的界面结构及连接强度   总被引:10,自引:4,他引:6       下载免费PDF全文
对常压烧结的SiC陶瓷与TiAl金属间化合物进行了真空扩散连接。采用扫描电镜、电子和X射线衍射分析等确定了反应产物的种类和接头的界面结构,并用拉剪试验评价了接头的连接强度。研究结果表明:SiC与TiAl扩散连接中生成了TiAl2、TiC和T5Si3Cx三种上,接头的界面结构为SiC/TiC/(TiC+Ti5Si3Cx)/TiAl。在1573K和1.8ks的连接条件下,接头室温剪强度达到240MPa  相似文献   

13.
采用氟盐法按w(Ti)∶w(C)=15∶1比例,加入1%的Ce制备了Al-4.5Ti-0.3C-1Ce中间合金,应用OM、SEM、EDAX及EPMA等手段分析了中间合金的成分、组织及细化特性。结果表明,由于Ce的加入,改善了TiAl3、TiC的形态和分布,细化了TiC粒子,使生成的TiC与TiAl3相分布均匀,稀土Ce和TiAl3反应生成Ti2Al20Ce相,主要富集在白色块状的TiAl3相上;Al-4.5Ti-0.3C-1Ce合金细化剂对纯铝的细化效果显著,当Ti添加量为0.015%时,纯铝的晶粒尺寸达70μm,细化效果最优。  相似文献   

14.
分别以Fe40Al、Ni3Al和TiAl(NbCr)金属间化合物为基体,在一定的压力和温度下,使其和低孔隙率TiC粉体烧结体有效结合。采用扫描电镜及能谱仪等对其界面的组织结构进行分析。结果表明,所有金属间化合物均与TiC烧结体形成了冶金结合的界面。TiC烧结体在高温保压过程中有微量分解,扩散进入了Fe40Al和Ni3Al基体表层,降低了其熔点,从而使其成为可流动状态,被挤压进入TiC烧结体的孔隙。但TiAl(NbCr)合金未能进入TiC烧结体孔隙,而是在与TiC的界面处形成了一层Ti含量高于基体约10at%的反应层。  相似文献   

15.
设计了一种电致伸缩式单轴超声悬浮反应系统,在Al-Ti熔体中形成超声驻波,使C粉末悬浮在合金熔体中进行TiC合成反应,以制备Al-3Ti-0.15C晶粒细化剂。通过组织观察和声压分析,研究了C粉末的悬浮情况、合金的组织形态及其形成机制。结果表明:只有在声辐射功率较小的时候,超声波在辐射块与反射板间的熔体中形成声压节点,在声压梯度作用下,使C和TiAl3能稳定地悬浮在声压节点处,而声功率较大时,驻波的二次谐波增加,声压节点消失,C粉末的稳定性破坏;C粉末的反应过程为:超声的空化效应使TiAl3溶解形成活性Ti,并通过Ti、C发生合成反应形成TiC相,同时,对TiC粒子具有热激活作用。  相似文献   

16.
铝热反应制备Al-Ti-C中间合金的研究   总被引:7,自引:0,他引:7  
铝热反应是工业生产实践中制备Al-Ti及Al-Ti系中间合金的重要理论基础。本文利用X射线衍射相分析、扫描电镜(SEME)、能谱(EDS)分析以及化学分析等方法对铝热反应法制备了Al-Ti-C中间合金的过程进行了研究,结果表明反应初期非常剧烈,后期达到平衡。铝热反应由3个具体的反应构成。反应初期,生成了TiAl3,并出现了TiC以及亚稳态的TiAl9相;反应后期TiAl9相消失,出现了少量Al4C  相似文献   

17.
反应合成Ti_3Al/TiC+Al_2O_3复合材料烧结过程热力学分析   总被引:1,自引:0,他引:1  
将高能球磨后的Ti-Al粉末和TiC,Al2O3粉末混合进行热压烧结,在烧结的过程中反应生成金属间化合物为增强相的复合材料。通过对粉料的X射线衍射分析、热分析(DSC)和烧结体的成分分析表明,最终的金属间化合物只有Ti3Al而没有其它金属间化合物相。通过热力学计算,分析了反应烧结过程并发现在低温由固相间原子扩散控制生成TiAl3,TiAl,Ti3Al的渐进过程,和在高温下金属间化合物的合成机理,而且增强相和基体界面间处于稳定状态。  相似文献   

18.
在1143~1213 K、120~1500 s参数范围内以Ag-Cu-Ti箔为钎料对TiAl合金与42CrMo钢进行了真空钎焊试验.采用光学显微镜、扫描电镜、元素面扫描和能谱分析等方法对界面组织进行了分析,测量了界面反应层厚度.分析了界面反应层的形成过程及受控因素,计算了反应层成长的动力学参数.结果表明,接头界面反应层包括靠近TiAl合金的AlCuTi+Ti3Al层、AlCu2Ti层以及靠近42CrMo钢的TiC层,其成长活化能分别为324.97、207.97、338.03 kJ/mol.TiAl合金与钎科的界面反应层受控于液态钎料中的Cu元素,成长较快:42CrMo钢与钎料间的TiC层受控于固态钢中C元素,成长较慢.脆性反应层AlCuTi+Ti3Al层厚度为3.3μm时接头强度最高,脆性层厚度继续增大,接头强度显著下降.  相似文献   

19.
采用高频感应加热的方式 ,在Ar气保护条件下 ,用Ag -Cu -Ti钎料实现了TiAl基合金与 4 0Cr钢的钎焊连接 ;采用扫描电镜、电子探针、X射线衍射分析等手段对断口、界面、生成相进行了分析 ,并且测试了接头的抗拉强度。结果表明 ,在界面上有Ti(CuAl) 2 、Ag[s,s]、TiC等反应相生成 ,典型接头界面结构为TiAl/Ti(CuAl) 2 +Ag[s ,s]/Ag[s,s]/TiC/ 4 0Cr) ;断裂位置及接头的抗拉强度随保温时间而变化 ;当钎焊连接温度为 114 3K ,保温时间 0 .9ks时接头抗拉强度值最高 ,达到 2 98MPa,断裂主要发生在Ti(CuAl) 2 层内部  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号