首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, nitrogen removal was investigated in pilot-scale subsurface flow (SSF) and in free water surface flow (FWS) constructed wetlands installed in the campus of TUBITAK-Marmara Research Center, Gebze, near Istanbul, Turkey. The main purposes of this study are to apply constructed wetlands for the protection of water reservoirs and to reuse wastewater. Experiments were carried out at continuous flow reactors. The effects of the type of plants on the removal were investigated by using emergent (Canna, Cyperus, Typhia spp., Phragmites spp., Juncus, Poaceae, Paspalum and Iris.), submerged (Elodea, Egeria) and floating (Pistia, Salvina and Lemna) marsh plants at different conditions. During the study period HLRs were 30, 50, 70, 80 and 120 L m(2)d(-1) respectively. The average annual NH4-N, NO(3)-N, organic N and TN treatment efficiencies in SSF and FWS wetlands are 81% and 68%, 37% and 49%, 75% and 68%, 47% and 53%, respectively. Nitrification, denitrification and ammonification rate constant (k20) values in SSF and FNS systems have been found as 0.898 d(-1) and 0.541 d(-1), 0.488 d(-1) and 0.502 d(-1), 0.986 d(-1) and 0.908 respectively. Two types of the models (first-order plug flow and multiple regression) were tried to estimate the system performances.  相似文献   

2.
A pilot scale treatment system was established in 2002 at the Laflèche Landfill in Eastern Ontario, Canada. The system consists of a series of treatment steps: a stabilisation basin (10,000 m3), a woodland peat trickling filter (5,200 m2), a subsurface flow constructed wetland planted in Phragmites sp. (2,600 m2), a surface flow constructed wetland planted in Typha sp. (3,600 m2) and a polishing pond (3,600 m2). The system operates from May to December with leachate being recycled within the landfill during the winter months. Hydraulic loading was increased three-fold over four operating seasons with nitrogen and organic mass loading increasing six-fold. Excellent removal efficiencies were observed with 93% BOD5, 90% TKN and 97% NH4-N removed under the highest loading conditions. Almost complete denitrification was observed throughout the treatment system with NO3-N concentrations never exceeding 5mg L(-1). The peat filter reached treatment capacity at a hydraulic loading of 4cm d(-1) and organic loading rate of 42 kg BOD ha(-1) d(-1), which is consistent with design criteria for vertical flow wetland systems and intermittent sand filters, The first order plug flow kinetic model was effective at describing TKN and ammonium removal in the SSF and FWS wetlands when background concentrations were taken into account. Ammonium removal k-values were consistent with the literature at 52.6 and 57.7 yr(-1) for the SSF and FWS wetlands, respectively, while TKN k-values at 6.9 and 7.7 yr(-1) were almost an order of magnitude lower than literature values, suggesting that leachate TKN could contain refractory organics not found in domestic wastewater.  相似文献   

3.
In this study, two types of industrial wastewater, oil-refining and steel-milling, were selected for investigating their feasibility of treatment by mesocosm constructed wetland systems. The secondly treated effluents from the wastewater treatment plants were directly discharged into the systems controlled at different flow rates. Three wetland mesocosms were installed in the two industries: mesocosms A and B were in the oil refinery, and mesocosm C was in the steel mill. The substratum media used in wetland systems were sand (mesocosm A) and gravel (mesocosms B and C), while the vegetation types selected were reeds (mesocosms A and B) and mixed species of reeds and cattails (mesocosm C). The flow regimes were controlled as free water surface (FWS) and subsurface flow (SSF) for the sand- and gravel-beds, respectively. According to the experimental results, we found that the system treating oil-refining wastewater performed better than that treating steel-milling wastewater learned by comparing the removal efficiencies of COD, total N and total P. In addition, it was found that for oil-refining wastewater treatments, the SSF wetland system (mesocosm B) performed better than FWS (mesocosm A) wetland system when comparing both of their removal of pollutants and growth of vegetation. Besides, the effluents from these two industrial wetland treatment systems might be reclaimed and reused for boiler water, cooling, cleaning and miscellaneous purposes in industries. Further treatments are required if the constructed wetland effluents are thought about being reused for processing in industries.  相似文献   

4.
Domestic wastewater is a significant source of nitrogen and phosphorus, which cause lake eutrophication. Among the wastewater treatment technologies, constructed wetlands are a promising low-cost means of treating point and diffuse sources of domestic wastewater in rural areas. However, the sustainable operation of constructed wetland treatment systems depends upon a high rate conversion of organic and nitrogenous loading into their metabolic gaseous end products, such as N2O and CH4. In this study, we examined and compared the performance of three typical types of constructed wetlands: Free Water Surface (FWS), Subsurface Flow (SF) and Vertical Flow (VF) wetlands. Pollutant removal efficiency and N2O and CH4 emissions were assessed as measures of performance. We found that the pollutant removal rates and gas emissions measured in the wetlands exhibited clear seasonal changes, and these changes were closely associated with plant growth. VF wetlands exhibited stable removal of organic pollutants and NH3-N throughout the experiment regardless of season and showed great potential for CH4 adsorption. SF wetlands showed preferable T-N removal performance and a lower risk of greenhouse gas emissions than FWS wetlands. Soil oxidation reduction potential (ORP) analysis revealed that water flow structure and plant growth influenced constructed wetland oxygen transfer, and these variations resulted in seasonal changes of ORP distribution inside wetlands that were accompanied by fluctuations in pollutant removal and greenhouse gas emissions.  相似文献   

5.
Coconut dust, which is used intensively in horticultural applications, was tested as an external organic additive in a series of laboratory-scale subsurface-flow constructed wetlands planted with Phragmites australis. The systems were fed with a mixture of NO3(-)-N, NH4+-N, and SRP in tap water to simulate high nutrient loads. In the absence of plants, TN removal efficiency was 66%, and the efficiency increased to > 80% in the microcosm wetlands. TN and NO3- removal efficiencies were marginally increased by coconut-dust treatment in comparison with sand-bed microcosms. Analysis by ANOVA showed that the TN removal from a coconut dust-supplemented sand-bed microcosm was significantly different from a sand-bed microcosm (0.0437 < p < 0.05). All the systems showed an equal capacity to treat NH4+ nitrogen under low influent concentration levels. Phosphorus removal efficiencies were > 98% in all three systems, and a difference between planted and unplanted systems was not observed. Shoot height and shoot densities of P. australis grown in the coconut dust-supplemented medium were significantly higher than those grown in the sand-bed medium. The difference in P. australis growth in response to the coconut dust addition revealed that the added material has the potential to create favourable conditions for plant growth.  相似文献   

6.
构建下行流-上行流、下行流-下行流两套复合人工湿地处理生活污水,考察不同运行方式下两套湿地系统污染物净化效果。结果表明,下行流-上行流复合系统适合在较低水力负荷[0.6m3/(m^2.d)]下运行,系统连续进水5天的出水效果很好,COD、TP、氨氮、TN的去除率分别为75%-95%、65%-85%、45%-80%、45%-80%。下行流-下行流复合系统耐水力负荷冲击能力强,适合在高水力负荷[1.2m3/(m^2.d)]下运行,COD、TP、氨氮、TN的去除率分别为70%-95%、40%-85%、50%-90%、50%-80%;其水流方式较下行流-上行流复合系统水流方式更利于复氧,有利于高水力负荷下COD、氨氮的降解。研究成果为实际中人工湿地处理生活污水的运行操作提供了依据和参考。  相似文献   

7.
Simultaneous denitrification and methanogenesis were accomplished in a single upflow sludge blanket (USB) reactor. More than 99% and 95% of nitrate and chemical oxygen demand (COD) removal rates were obtained at a loading of 600 mg NO3-N/L x d and 3,300 mg COD/L x d, respectively. The specific denitrification rate (SDR) increased as COD/NO3-N ratios decreased. Maximum SDR with acetate could reach 1.05 g NO3-N/gVSS x d. Significant sludge flotation was observed at the top of the reactor due to the change of microbial composition and the formation of hollow granules. Granules became fluffy and buoyant due to the growth of denitrifiers. Microscopic examination showed that granules exhibited layered structure and they were mainly composed of Methanosarcina sp., Pseudomonas sp., and rod-shaped bacteria.  相似文献   

8.
Design Methodology of Free Water Surface Constructed Wetlands   总被引:2,自引:1,他引:1  
Simple criteria, guidelines and models are established for free water surface (FWS) constructed wetland selection and preliminary sizing. The analysis employs models for FWS constructed wetland design, considering simultaneously the removal requirements and the hydraulics of the system. On the basis of these models, a step-by-step methodology is developed outlining the design procedure for new and performance evaluation for existing FWS constructed wetland systems. This methodology is combined with simple equations predicting the maximum wetland capacity in summer, so as to assist designers in sizing installations in tourist areas with increased summer populations. Furthermore, this methodology is further simplified, based on sensitivity analysis of the unit area requirements for wastewaters of various strengths, and various design conditions and performance criteria. In addition, comparison of the unit area requirements of FWS constructed wetland systems, subsurface flow (SF) constructed wetland systems and stabilization pond systems for wastewaters of various strengths and design conditions, provides designers with general guidelines concerning the preliminary selection between alternative natural treatment systems in areas where the use of natural systems is favored because of their low-cost, simple operation and high removal performance.  相似文献   

9.
A laboratory-scale fluidized-bed reactor with an external aeration loop was used for nitrification of high-strength ammonium wastewater (up to 500 mg NH4-N/L). The results demonstrated that the system is capable of handling ammonium removal rates of up to 2.5 kg NH4-N/m3 x d, while removal efficiencies were as high as 98% and independent of the applied ammonium loading rates. Ammonium loading rates higher than 2.5 kg NH4-N/m3 x d resulted in decreased ammonium removal efficiency. The data show that near complete ammonium removal occurred at DO concentrations as low as 0.3-0.5 mg/L. However, the nitrite-nitrogen fraction in the effluent increased from 3.5% to 23.2% when the DO dropped from 1.0 mg/L to approximately 0.4 mg/L, respectively. The high specific removal rates in this system are one order of magnitude higher than that of suspended-growth systems. This can reduce the supplementary reactor volumes required for nitrification to less than 10% of that needed in conventional activated sludge systems. These results clearly indicate the potential economic gains that could be achieved through implementation of this technology.  相似文献   

10.
Nitrogen removal performance and the ammonia-oxidising bacterial (AOB) community were assessed in the batch loaded 1.3 ha saturated surface vertical flow wetland at CSBP Ltd, a fertiliser and chemical manufacturer located in Kwinana, Western Australia. From September 2008 to October 2009 water quality was monitored and sediment samples collected for bacterial analyses. During the period of study the wetland received an average inflow of 1,109 m3/day with NH3-N = 40 mg/L and NO3-N = 23 mg/L. Effluent NH3-N and NO3-N were on average 31 and 25 mg/L, respectively. The overall NH3-N removal rate for the period was 1.2 g/m2/day indicating the nitrifying capacity of the wetland. The structure of the AOB community was analysed using group specific primers for the ammonia monooxygenase gene (amoA) by terminal restriction fragment length polymorphism and by clone libraries to identify key members. The majority of sequences obtained were most similar to Nitrosomonas sp. while Nitrosospira sp. was less frequent. Another two vertical flow wetlands, 0.8 ha each, were commissioned at CSBP in July 2009, since then the wetland in this study has received nitrified effluent from these two new cells.  相似文献   

11.
In this study, four similar bench-scale submerged Anoxic/Oxic Membrane Bioreactors (MBR) were used simultaneously to investigate the effects of solids retention time (SRT) on organic and nitrogen removal in MBR for treating domestic wastewater. COD removal efficiencies in all reactors were consistently above 94% under steady state conditions. Complete conversion of NH(4+)-N to NO(3-)-N was readily achieved over a feed NH(4+)-N concentration range of 30 to 50 mg/L. It was also observed that SRT did not significantly affect the nitrification in the MBR systems investigated. The average denitrification efficiencies for the 3, 5, 10 and 20 days SRT operations were 43.9, 32.6, 47.5 and 66.5%, respectively. In general, the average effluent nitrogen concentrations, which were mainly nitrate, were about 22.2, 27.6, 21.7 and 13.9 mg/L for the 3, 5, 10 and 20 days SRT systems, respectively. The rate of membrane fouling at 3 days SRT operation was more rapid than that observed at 5 days SRT. No fouling was noted in the 10 days and 20 days SRT systems during the entire period of study.  相似文献   

12.
The objectives of this study were to find appropriate conditions for nitrogen removal by a compact combined constructed wetland system and to evaluate the removal rate constant in a tropical climate. This study will present suitable operating conditions for a combined system to treat pig farm wastewater containing high ammonia-nitrogen. Four laboratory-scale combined constructed wetland units (0.5 x 1.0 x 1.0 m3): vertical flow vegetated bed over horizontal flow sand bed, were operated under an average temperature of 24 degrees C. Pig farm wastewater with COD and NH4-N concentration of 1034 and 448 mg/L in average was fed to the system at different HLR from 2 to 8 cm/day. The performance of the system when operated with a vertical flow bed followed by a horizontal flow bed or vice versa did not show a significant difference but under high HLR, nitrogen removal efficiencies were clearly reduced. Nitrobacter and Nitrosomonas were found in a large number in vertical flow beds and the same for denitrifier bacteria in a horizontal flow beds. Removal rate constants for nitrification (kNH4+ -N) were 0.0413 m/d for H-Vmode and 0.0339 m/d for V-H mode. Removal rate constants for denitrification (kNOx-N) were 0.0979 m/d for H-Vmode and 0.0399 m/d for V-H mode, respectively.  相似文献   

13.
用氧化塘—浮石床湿地系统处理暖寒季低污染河水   总被引:1,自引:0,他引:1       下载免费PDF全文
在滇池流域构建氧化塘-浮石床湿地复合系统对暖季与寒季的城市低污染河水开展了净化效能研究。结果表明:该系统可通过小幅调节流量来有效净化暖季与寒季低污染河水。塘与湿地的水力负荷分别为0.22、0.37m3/(m2.d)时系统对暖季低污染河水具有较高的处理效率,各污染物的平均去除率分别为CODCr75%、TP 93%、TN 64%、NH4+-N 87%。塘与湿地的水力负荷分别为0.17、0.29 m3/(m2.d)时系统对寒季低污染河水具有较优的处理效果:各污染物的平均去除率分别为CODCr72%、TP 89%、TN 53%、NH4+-N 73%。系统出水均符合GB18918-2002的一级A排放标准。系统在暖季对低污染河水中污染物的去除速率明显高于寒季。  相似文献   

14.
In South Sweden, free water surface wetlands have been built to treat wastewater from municipal wastewater treatment plants. Commonly, nitrogen removal has been the prime aim, though a significant removal of tot-P and BOD7 has been observed. In this study, performance data for 3-8 years from four large (20-28 ha) FWS wetlands have been evaluated. Two of them receive effluent from WWTP with only mechanical and chemical treatment. At the other two, the wastewater has also been treated biologically resulting in lower concentrations of BOD7 and NH4+-N. The wetlands performed satisfactorily and removed 0.7-1.5 ton N ha(-1) yr(-1) as an average for the time period investigated, with loads between 1.7 and 6.3 ton N ha(-1)yr(-1). Treatment capacity depended on the pre-treatment of the water, as reflected in the k20-values for N removal (first order area based model). In the wetlands with no biological pre-treatment, the k20-values were 0.61 and 1.1 m month(-1), whereas for the other two they were 1.7 and 2.5 m month(-1). P removal varied between 10 and 41 kg ha(-1) yr(-1), and was related to differences in loads, P speciation and to the internal cycling of P in the wetlands.  相似文献   

15.
Thin stillage (CTS) from a dry-grind corn ethanol plant was evaluated as a carbon source for anaerobic digestion (AD) by batch and high rate semi-continuous down-flow stationary fixed film (DSFF) reactors. Biochemical methane potential (BMP) assays were carried out with CTS concentrations ranging from approximately 2,460-27,172 mg total chemical oxygen demand (TCOD) per litre, achieved by diluting CTS with clean water or a combination of clean water and treated effluent. High TCOD, SCOD and volatile solids (VS) removal efficiencies of 85 ± 2, 94 ± 0 and 82 ± 1% were achieved for CTS diluted with only clean water at an organic concentration of 21,177 mg TCOD per litre, with a methane yield of 0.30 L methane per gram TCOD(removed) at standard temperature and pressure (STP, 0 °C and 1 atmosphere). Batch studies investigating the use of treated effluent for dilution showed promising results. Continuous studies employed two mesophilic DSFF anaerobic digesters treating thin stillage, operated at hydraulic retention times (HRT) of 20, 14.3, 8.7, 6.3, 5 and 4.2 d. Successful digestion was achieved up to an organic loading rate (OLR) of approximately 7.4 g TCOD L(-1)d(-1) at a 5 d HRT with a yield of 2.05 LCH(4) L(-1)d(-1) (at STP) and TCOD and VS removal efficiencies of 89 ± 3 and 85 ± 3%, respectively.  相似文献   

16.
This study was to investigate domestic treatment efficiency of a subsurface wastewater infiltration (SWI) system over time. The performances of a young SWI system (in Shenyang University, China, fully operated for one year) and a mature SWI system (in Shenyang Normal University, China, fully operated for seven years) under the same operation mode were contrasted through field-scale experiments for one year. The performance assessment for these systems is based on physical and chemical parameters collected. The removal efficiencies within the young system were relatively high if compared with the mature one: for biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), ammonia nitrogen (NH(3)-N) and total phosphorus (TP) were 95.0, 89.1, 98.1, 87.6 and 98.4%, respectively. However, the removal efficiencies decreased over time. The mean removal efficiencies for the mature SWI system were as follows: BOD (89.6%), COD (87.2%), SS (82.6%), NH(3)-N (69.1%) and TP (74.4%). The results indicate that the mature SWI system successfully removed traditional pollutants such as BOD from domestic wastewater. However, the nutrient reduction efficiencies (including NH(3)-N and TP) decreased after seven years of operation of the mature SWI system. Meanwhile, the SWI system did not decrease the receiving surface water quality.  相似文献   

17.
为提高表面流人工湿地对低污染水的生态净化效率,对人工湿地中湿生植物的组成进行比选研究,设置8个由不同湿生植物(包括挺水、沉水和浮叶植物)组成的表面流人工湿地,比较其净化尾水氮磷效果。结果表明:挺水植物圆币草(Hydrocotyle verticillata)和大聚藻(Myriophyllum aquaticum)组合的表面流人工湿地净化尾水氮磷效果最好,其人工湿地对TN、NO-3-N和NH3-N的平均去除率分别为68.6%、62.6%和78.2%,对TP和溶解性无机磷(DIP)的平均去除率分别为64.5%和80%。浮叶植物睡莲(Nymphaea L.)人工湿地去除氮磷能力次之,TN、NO-3-N、NH3-N、TP和DIP平均去除率分别为55%、55.2%、63.3%、56.1%和64.7%,体现一定的污染物去除潜力。沉水植物苦草[Vallisneria natans(Lour.)Hara]在与圆币草等共存净化尾水过程中逐渐失去优势种地位。而由黄菖蒲(Iris pseudacorus L.)和再力花(Thalia dealbata)等挺水植物构建的表面流人工湿地,虽然生物量高,但其氮磷去除效果较差,尤其是再力花人工湿地对TN、NO-3-N和NH3-N平均去除率仅在18%~36.2%之间,对TP和DIP平均去除率也分别只有41.5%和38.7%。因此,采用圆币草和大聚藻组合构建的表面流人工湿地能更有效净化污水处理厂尾水中氮磷,对TN的去除尤为高效,能有效提升尾水水质。  相似文献   

18.
The decimal elimination capacity (DEC) of slow sand filters (SSF) for viruses, bacteria and oocysts of Cryptosporidium has been assessed from full-scale data and pilot plant and laboratory experiments. DEC for viruses calculated from experimental data with MS2-bacteriophages in the pilot plant filters was 1.5-2 log10. E. coli and thermotolerant coliforms (Coli44) were removed at full-scale and in the pilot plant with 2-3 log10. At full-scale, Campylobacter bacteria removal was 1 log10 more than removal of Coli44, which indicated that Coli44 was a conservative surrogate for these pathogenic bacteria. Laboratory experiments with sand columns showed 2-3 and >5-6 log10 removal of spiked spores of sulphite-reducing clostridia (SSRC; C. perfringens) and oocysts of Cryptosporidium respectively. Consequently, SSRC was not a good surrogate to quantify oocyst removal by SSF. Removal of indigenous SSRC by full-scale filters was less efficient than observed in the laboratory columns, probably due to continuous loading of these filter beds with spores, accumulation and retarded transport. It remains to be investigated if this also applies to oocyst removal by SSF. The results additionally showed that the schmutzdecke and accumulation of (in)organic charged compounds in the sand increased the elimination of microorganisms. Removal of the schmutzdecke reduced DEC for bacteria by +/-2 log10, but did not affect removal of phages. This clearly indicated that, besides biological activity, both straining and adsorption were important removal mechanisms in the filter bed for microorganisms larger than viruses.  相似文献   

19.
A three-stage constructed wetland for leachate treatment was monitored on a landfill at a pilot scale. The plant had been designed to achieve at least 75% nitrogen removal. NH4-N input concentration was 240 (median) up to 290 mgl(-1) and COD concentration was 455 to 511 mgl(-1), respectively. A 14 m2 vertical flow sand filter plus a 14 m2 horizontal flow sand filter followed by a 3.3 m2 vertical flow sand filter was chosen. Acetic acid was added to the horizontal flow system for denitrification. The results showed a very stable nitrification rate within the vertical flow system of 94% (median) at NH4-N loading rates of about 10 (median) up to 17 gm(-2)d(-1). Denitrification was mainly dependent on the dosing of acetic acid and could reach a maximum of 98%. One interesting effect was the production of nitrite in the horizontal flow sand filter. This could efficiently be eliminated by the subsequent vertical flow sand filter. The chosen concept proved to be very effective for nitrogen removal. In combination with a final activated carbon filter the COD effluent concentrations could be easily and safely controlled. The design of denitrification reed beds showed a further potential for optimization.  相似文献   

20.
A four stage pilot plant of step-feed biological nutrient removal (BNR) was employed to investigate reactor performance and process stability. The results obtained showed that step-feed BNR is efficient and cost-effective for nitrogen and carbonaceous removal from municipal wastewater. The total average removal efficiencies of COD, NH3-N, TN and TP could reach as high as 89.5, 97.8, 73 and 75%, respectively, with 50% of return activated sludge (RAS), 9 h of hydraulic retention time (HRT) and 20 d of sludge retention time (SRT). Step-feed BNR is an alternative and effective technology of nutrient removal for municipal wastewater treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号