首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effective support of real‐time multimedia applications in wireless access networks, viz. cellular networks and wireless LANs, requires a dynamic bandwidth adaptation framework where the bandwidth of an ongoing call is continuously monitored and adjusted. Since bandwidth is a scarce resource in wireless networking, it needs to be carefully allocated amidst competing connections with different Quality of Service (QoS) requirements. In this paper, we propose a new framework called QoS‐adaptive multimedia wireless access (QoS‐AMWA) for supporting heterogeneous traffic with different QoS requirements in wireless cellular networks. The QoS‐AMWA framework combines the following components: (i) a threshold‐based bandwidth allocation policy that gives priority to handoff calls over new calls and prioritizes between different classes of handoff calls by assigning a threshold to each class, (ii) an efficient threshold‐type connection admission control algorithm, and (iii) a bandwidth adaptation algorithm that dynamically adjusts the bandwidth of an ongoing multimedia call to minimize the number of calls receiving lower bandwidth than the requested. The framework can be modeled as a multi‐dimensional Markov chain, and therefore, a product‐form solution is provided. The QoS metrics—new call blocking probability (NCBP), handoff call dropping probability (HCDB), and degradation probability (DP)—are derived. The analytical results are supported by simulation and show that this work improves the service quality by minimizing the handoff call dropping probability and maintaining the bandwidth utilization efficiently. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
为了降低多媒体业务在移动环境中的呼叫中断率,提高无线信道的利用率,该文提出了一种动态预留带宽分配机制(DRBA),该机制对到达的越区切换呼叫按业务类型区别处理,对于高优先级的实时业务,通过在邻近小区内预留带宽的方法降低呼叫中断率;对于非实时业务,当小区内的信道带宽不足以支持新到达的越区切换呼叫时,通过动态地借用实时业务过度预留的带宽,改善非实时业务的呼叫中断率,进一步达到提高无线信道利用率,为不同的业务类型提供公平的服务质量(QoS)的目标。  相似文献   

3.
Due to the fact that quality of service requirements are not very strict for all traffic types, more calls of higher priority can be accommodated by reducing some bandwidth allocation for the bandwidth adaptive calls. The bandwidth adaptation to accept a higher priority call is more than that of a lower priority call. Therefore, the multi-level bandwidth adaptation technique improves the overall forced call termination probability as well as provides priority of the traffic classes in terms of call blocking probability without reducing the bandwidth utilization. We propose a novel bandwidth adaptation model that releases multi-level of bandwidth from the existing multimedia traffic calls. The amount of released bandwidth is decided based on the priority of the requesting traffic calls and the number of existing bandwidth adaptive calls. This prioritization of traffic classes does not reduce the bandwidth utilization. Moreover, our scheme reduces the overall forced call termination probability significantly. The proposed scheme is modeled using the Markov Chain. The numerical results show that the proposed scheme is able to provide negligible handover call dropping probability as well as significantly reduced new call blocking probability of higher priority calls without increasing the overall forced call termination probability.  相似文献   

4.
One of the important issues in providing efficient multimedia traffic on a mobile computing environment is to guarantee the mobile host (client) with consistent QoS (Quality of Service). However, the QoS negotiated between the client and the network in one cell may not be honored due to client mobility, causing hand-offs between cells. In this paper, a call admission control mechanism is proposed to provide a consistent QoS guarantee for multimedia traffic on a mobile computing environment. Each cell can reserve fractional bandwidth for hand-off calls to its adjacent cells. It is important to determine the right amount of bandwidth reserved for hand-off calls because the blocking probability of new calls may increase if the amount of reserved bandwidth is more than necessary. An adaptive bandwidth reservation based on a mobility graph and a 2-tier cell structure is proposed to determine the amount of bandwidth to be reserved in the cell and to control dynamically its amount according to network conditions. We also propose a call admission control based on this bandwidth reservation and ``next-cell prediction' scheme using a mobility graph. In order to evaluate the performance of our call admission control mechanism, we measure metrics such as blocking probability of new calls, dropping probability of hand-off calls, and bandwidth utilization. The simulation results show that the performance of our mechanism is superior to that of existing mechanisms such as NR-CAT2, FR-CAT2, and AR-CAT2.  相似文献   

5.
This paper proposes a QoS approach for an adaptive call admission control (CAC) scheme for multiclass service wireless cellular networks. The QoS of the proposed CAC scheme is achieved through call bandwidth borrowing and call preemption techniques according to the priorities of the traffic classes, using complete sharing of the available bandwidth. The CAC scheme maintains QoS in each class to avoid performance deterioration through mechanisms for call bandwidth degradation, and call bandwidth upgrading based on min–max and max–min policies for fair resource deallocation and reallocation, respectively. The proposed adaptive CAC scheme utilizes a measurement‐based online monitoring approach of the system performance, and a prediction model to determine the amount of bandwidth to be borrowed from calls, or the amount of bandwidth to be returned to calls. The simulation‐based performance evaluation of the proposed adaptive CAC scheme shows the strength and effectiveness of our proposed scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Good quality video services always require higher bandwidth. Hence, to provide the video services e.g., multicast/broadcast services (MBSs) and unicast services along with the existing voice, internet, and other background traffic services over the wireless cellular networks, it is required to efficiently manage the wireless resources in order to reduce the overall forced call termination probability, to maximize the overall service quality, and to maximize the revenue. Fixed bandwidth allocation for the MBS sessions either reduces the quality of the MBS videos and bandwidth utilization or increases the overall forced call termination probability and of course the handover call dropping probability as well. Scalable video coding (SVC) technique allows the variable bit rate allocation for the video services. In this paper, we propose a bandwidth allocation scheme that efficiently allocates bandwidth among the MBS sessions and the non-MBS traffic calls (e.g., voice, unicast, internet, and other background traffic). The proposed scheme reduces the bandwidth allocation for the MBS sessions during the congested traffic condition only to accommodate more calls in the system. Instead of allocating fixed bandwidths for the MBS sessions and the non-MBS traffic, our scheme allocates variable bandwidths for them. However, the minimum quality of the videos is guaranteed by allocating minimum bandwidth for them. Using the mathematical and numerical analyses, we show that the proposed scheme maximizes the bandwidth utilization and significantly reduces the overall forced call termination probability as well as the handover call dropping probability.  相似文献   

7.
An efficient call admission control scheme for handling heterogeneous services in wireless ATM networks is proposed. Quality-of-service provisioning of jitter bounds for constant bit rate traffic and delay bounds for variable bit rate traffic is used in the CAC scheme to guarantee predefined QoS levels for all traffic classes. To reduce the forced handoff call dropping rate, the CAC scheme gives handoff calls a higher priority than new calls by reserving an appropriate amount of resources for potential handoff calls. Resource reservation in the CAC scheme makes use of user mobility information to ensure efficient resource utilization. Simulation results show that the proposed CAC scheme can achieve both low handoff call dropping rate and high resource utilization  相似文献   

8.
In future personal communications networks (PCNs) supporting network-wide handoffs, new and handoff requests will compete for connection resources in both the mobile and backbone networks. Forced call terminations due to handoff call blocking are generally more objectionable than new call blocking. The previously proposed guard channel scheme for radio channel allocation in cellular networks reduces handoff call blocking probability substantially at the expense of slight increases in new call blocking probability by giving resource access priority to handoff calls over new calls in call admission control. While the effectiveness of a fixed number of guard channels has been demonstrated under stationary traffic conditions, with nonstationary call arrival rates in a practical system, the achieved handoff call blocking probability may deviate significantly from the desired objective. We propose a novel dynamic guard channel scheme which adapts the number of guard channels in each cell according to the current estimate of the handoff call arrival rate derived from the current number of ongoing calls in neighboring cells and the mobility pattern, so as to keep the handoff call blocking probability close to the targeted objective while constraining the new call blocking probability to be below a given level. The proposed scheme is applicable to channel allocation over cellular mobile networks, and is extended to bandwidth allocation over the backbone network to enable a unified approach to prioritized call admission control over the ATM-based PCN  相似文献   

9.
Future Personal Communication Networks (PCN) will employ microcells and picocells to support a higher capacity, thus increasing the frequency of handoff calls. Forced call terminations due to handoff call blocking are generally more objectionable than new call blocking. The proposed guard channel schemes for radio channel allocation in cellular networks reduce handoff call blocking probability at the expense of increases in new call blocking probability by giving resource access priority to handoff calls over new calls in call admission control. Under uniform traffic assumptions, it has been shown that a fixed number of guard channels leads to good performance results. In a more realistic system, non-uniform traffic conditions should be considered. In this case, the achieved call blocking probability may deviate significantly from the desired objective. In this paper, we propose a new adaptive guard channel scheme: New Adaptive Channel Reservation (NACR). In NACR, for a given period of time, a given number of channels are guarded in each cell for handoff traffic. An approximate analytical model of NACR is presented. Tabu search method has been implemented in order to optimize the grade of service. Discrete event simulations of NACR were run. The effectiveness of the proposed method is emphasized on a complex configuration.  相似文献   

10.
In this paper, novel connection admission control (CAC) algorithms that take into account the effect of mobility of users both inside and outside the cell in the downlink of third-generation mobile systems are developed. First, the system capacity, including the other-cell interference, subject to feedback between cells is studied. Then, effective bandwidth expressions for calls are obtained as a function of both their location in the cell as well as their class of traffic (i.e., voice versus data). Next, this formulation is used to derive two mobility-aware admission control algorithms, i.e., a priority CAC, where calls are accepted not only upon resource availability, but also through acceptance ratios that reflect their levels of priority, and a squeezing CAC, where elastic calls may be squeezed to a minimum agreed value, giving way to admit more calls in the system and to secure further ongoing mobile users. Using Markovian analysis, several performance measures are obtained, namely the blocking probability, the dropping probability, both intracell and intercell, as well as the overall cell throughput. The authors eventually investigate the performance of our CAC and show how to extend the Erlang capacity bounds, i.e., the set of arrival rates such that the corresponding blocking/dropping probabilities are kept below predetermined thresholds  相似文献   

11.
盛洁  唐良瑞  郝建红 《电子学报》2013,41(2):321-328
 针对现有异构无线网络负载均衡方法未能综合考虑重载网络业务转移和新业务接入控制的问题,提出了一种混合负载均衡算法.该算法首先根据各小区负载水平和终端移动性,将重载小区的适量业务向重叠覆盖的轻载小区转移;其次通过资源预留和强占优先的接入控制策略,为不同优先级的新到业务提供有差别的服务.仿真结果表明,本文算法在保证系统资源利用率的同时,保障了实时与非实时业务的QoS,并相对于参考算法有效降低了系统阻塞率和业务切换概率.  相似文献   

12.
For various advantages including better utilization of radio spectrum (through frequency reuse), lower mobile transmit power requirements, and smaller and cheaper base station equipment, future wireless mobile multimedia networks are likely to adopt micro/picocellular architectures. A consequence of using small cell sizes is the increased rate of call handoffs as mobiles move between cells during the holding times of calls. In a network supporting multimedia services, the increased rate of call handoffs not only increases the signaling load on the network, but makes it very difficult for the network to guarantee the quality of service (QoS) promised to a call at setup or admission time. This paper describes an adaptive QoS handoff priority scheme which reduces the probability of call handoff failures in a mobile multimedia network with a micro/picocellular architecture. The scheme exploits the ability of most multimedia traffic types to adapt and trade off QoS with changes in the amount of bandwidth used. In this way, calls can trade QoS received for fewer handoff failures. The call level and packet level performance of the handoff scheme are studied analytically for a homogeneous network supporting a mix of wide-band and narrow-band calls. Comparisons are made to the performance of the nonpriority handoff scheme and the well-known guard-channel handoff scheme  相似文献   

13.
The proliferation of mobile, portable, and personal communication systems will bring a variety of offered services. Practical systems that are envisioned must support different types of calls. These may include voice only, mixed voice and data, high-speed data, low-speed data, image transmission, and an array of intelligent network services. In addition there may be a mixture of platforms (such as persons, autos, buses, trains, boats, and planes) having a range of mobility characteristics. In such environments, the bandwidth and/or resources needed for different call sessions will not be identical. As a result, calls will generally encounter different blocking and hand-off constraints. These effects are in addition to differences in blocking and forced (call) termination probabilities that are attributable to differing platform mobilities and (resource) channel quotas. Cellular systems with mixed platforms that support calls with differing resource requirements are considered. Loss-type systems and hybrid delay-loss systems are treated. In each case, priority access to resources for hand-off calls is allowable. We identify a suitable state characterization and framework for a performance analysis that enables numerical computation of theoretical performance results. Example performance characteristics are obtained. These show carried traffic, blocking probability, and forced termination probability for each platform type and for each call type  相似文献   

14.
In cellular wireless networks, the choice of Call Admission Control scheme impacts the performance of the system, particularly as how calls are managed when a mobile user is handed off from one cell to another. Non-prioritized schemes treat handoff calls and new calls equally, while, prioritized schemes give higher priority to handoff calls. In this paper, some of the popular non-prioritized and prioritized Call Admission Control schemes were investigated and their behavior was simulated and analyzed. They are evaluated based on call dropping probability, call blocking probability and system utilization parameters.  相似文献   

15.
Guard-based call admission control schemes support admission priorities based on resources sharing with differentiated resource capacity limits. To minimize deviation from call blocking/dropping targets due to nonstationary call arrival condition, dynamic guard-based schemes with predictive adaptation control adjust differentiated capacity limits according to predicted future arrival rates based on specified estimation algorithms. Existing dynamic guard admission schemes are developed under the assumption of perfect estimation, which may not be possible in a highly nonstationary environment and, thus resulting in failures to maintain targeted blocking/dropping probabilities. This paper presents the fairly adjusted multimode-dynamic guard bandwidth scheme, which is a dynamic-guard-based scheme over code-division multiple-access systems with predictive adaptation control to adapt interference-based guard loading-limits under nonstationary call arrival condition; and reactive adaptation control to counteract arrival rate estimation errors. When the predictive adaptation control policy mode is not able to maintain long-term call blocking or dropping targets due to estimation error, this will trigger reactive adaptation control policy modes that include temporary blocking (preemption) of one or more lower priority classes subject to fairness constraints to ensure lower priority classes are not preempted at all costs during estimation error recovery. Analytical and simulation results show that proposed scheme is able to provide performance guarantees in terms of dropping probabilities under nonstationary traffic arrival and imperfect arrival rate estimation.  相似文献   

16.
The next generation of mobile wireless networks has to provide the quality-of-service (QoS) for a variety of applications. One of the key generic QoS parameters is the call dropping probability, which has to be maintained at a predefined level independent of the traffic condition. In the presence of bursty data and the emerging multimedia traffic, an adaptive and dynamic bandwidth allocation is essential in ensuring this QoS. The paradox, however, is that all existing dynamic bandwidth allocation schemes require the prior knowledge of all traffic parameters or/and user mobility parameters. In addition, most proposals require extensive status information exchange among cells in order to dynamically readjust the control parameters, thus making them difficult to be used in actual deployment.In this paper, we introduce a novel adaptive bandwidth allocation scheme which estimates dynamically the changing traffic parameters through local on-line estimation. Such estimations are restricted to each individual cell, thus completely eliminating the signaling overhead for information exchange among cells. Furthermore, we propose the use of a probabilistic control policy, which achieves a high channel utilization, and leads to an effective and stable control. Through simulations, we show that our proposed adaptive bandwidth allocation scheme can guarantee the predetermined call dropping probability under changing traffic conditions while at the same time achieving a high channel utilization.  相似文献   

17.
An efficient resource sharing strategy is proposed for multimedia wireless networks. We assume the channel resource in a wireless system is partitioned into two sets: one for voice calls and one for video calls. In the proposed channel borrowing strategy, voice calls can borrow channels from those pre-allocated to video calls temporarily when all voice channels are busy. A threshold type decision policy is designed such that the channel borrowing request will be granted only if the quality of service (QoS) requirement on video call blocking will not be violated during the duration of channel lending. An analytical model is constructed for evaluating the performance of the channel borrowing strategy in a simplified wireless system and is verified by computer simulations. We found that the proposed channel borrowing scheme can significantly reduce the voice call blocking probability while the increase in video call blocking probability is insignificant  相似文献   

18.
This paper presents a channel reservation and preemption (CRP) model using overlapping regions in a cellular network with multiple sectors. To fully exploit and reuse the frequencies, directional antennas are installed on base stations (BSs) to divide the coverage into a number of equal‐sized sectors. When traffic is unevenly distributed across the sectors in a BS, channel utilization in every sector may become very different; low‐traffic sectors may be underutilized while high‐traffic sectors may be overutilized. A CRP scheme is thus proposed to more efficiently utilize free channels among sectors. CRP aims at reducing the dropping probabilities of handoff calls. Specifically, when free channels in a sector are not available, a handoff call, instead of being dropped, is allowed to preempt an ongoing call residing in the overlapping region of two adjacent sectors or two neighbor cells. Under CRP, the preempted ongoing call will not be disconnected, because it can switch over its service to the BS of a neighbor cell or to another directional antenna of an adjacent sector. For the purpose of evaluation, we build an analytical model for the proposed CRP using six‐tuple Markov chains. Analytical results show that the proposed CRP can significantly reduce the dropping probabilities of inter‐sector handoff calls, particularly when traffic between two sectors is not evenly distributed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
It is important to provide quality of service (QoS) guarantees if we want to support multimedia applications over wireless networks. In this paper, considering the features of tiering in sectored cellular networks, we propose a novel scheme for bandwidth reservation to approach QoS provisioning. By predicting the movement of each connection, the reserving of bandwidth is only required in needful neighboring cells instead of in all neighboring cells. In addition, an admission control mechanism incorporated with bandwidth borrowing assists in distributing scarce wireless bandwidth in more adaptive way. Through mathematical analysis, we proof the advantages of tier‐based approach and the bound for the selection of tiered boundary. The simulation results also verify that our scheme can achieve superior performance than traditional schemes regarding no bandwidth reserving, fixed bandwidth reserving, and bandwidth borrowing in sectored cellular networks when performance metrics are measured in terms of the connection dropping probability (CDP), connection blocking probability (CBP), and bandwidth utilization (BU). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Performance evaluation of two bandwidth allocation strategies in wireless mobile integrated services networks is carried out. Performances of the proposed strategies are compared with those of the traditional guard channels and threshold strategies. In the study, a single wireless cell which is accessed by voice and non-voice traffic types producing, respectively narrowband and wideband calls is considered. In the proposed strategies a number of channels are reserved in a fixed or dynamic fashion for the use of originating wideband calls in addition to the guard channels allocated for the handoff calls. The results indicate that the two strategies have comparable advantages and by manipulating the number of reserved channels, desired performance levels can be achieved. The dynamic reservation based strategy makes the system fairer for the originating wideband calls while maintaining low handoff dropping probability and acceptable channel utilization levels. On the other hand, the fixed reservation strategy provides a lower handoff call dropping at comparable channel utilization levels. The tradeoff is between improving the handoff call dropping versus the originating wideband call blocking. Both strategies provide better performance for the originating wideband calls compared with that provided by the traditional guard channels strategy.
Dervis Z. DenizEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号