首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined a method to produce bread from crystalline rice flour without using thickening agents such as gluten, polysaccharide thickening, and amorphous rice flour. Rice grains were pulverized by a jet mill to produce flour. Samples of rice flours of various particle size distributions were prepared by using a size shifter. The degree of starch damage and the dynamic viscoelasticity of rice batter were measured in this work. We also baked bread of the flour of each size distribution to study processability for making bread. The batter made by the pulverized flour of rice particle size ranging from 75 to 106 μm had the highest expansion ratio and a good processability for baking breads compared to other particle size batters. The rice bread with high expansion ratio was produced by controlling particle size of crystalline rice flour without using thickening agents.  相似文献   

2.
The effect of three different rice varieties with different starch shapes (Seolgaeng (SG), round starch structure; Samkwang (SK), polygonal starch structure and Boramchan (BRC), polygonal starch structure) on rice flour characteristics and gluten‐free bread baking quality was investigated. Rice flours were produced by dry milling and passed through a 200 mesh sieve. Electron microscopy revealed that the structure of SG grains, with round starch granules, possessed larger void spaces than SK and BRC, composed of polygonal starch granules. For this reason, SG grain had low grain hardness and consequently, it was milled to a fine flour with low damaged starch content. The thermo‐mechanical properties were determined by Mixolab, which revealed that SG was gelatinised rapidly and maintained high viscosity after gelatinisation. These characteristics gave SG flour the ability to build up bread structure without gluten. Specific volume and crumb hardness of gluten‐free rice breads made of SG, SK and BRC flours were 3.37, 3.11 and 2.12 mL g?1 and 2.61, 2.76 and 6.46 N, respectively. The SG flour with round starch structure is appropriate for making gluten‐free rice breads.  相似文献   

3.
Preparation and consumption of bread enriched with flours that contain appreciable amounts of protein, lysine, dietary fiber, and minerals will provide a healthy alternative to consumers and also a lowering of bread making cost in countries where wheat is not a major domestic crop. Addition of rice, corn, and soy flour to bread and durum wheat flours at 10, 20, 30, 40, 50% levels was carried out to examine the effects on the baking (specific volume, color, firmness) and sensory characteristics of bread. Dough rheological properties were also studied using Brabender Farinograph and Extensograph. Results of the present study suggest that incorporation of rice, corn, and soy in bread wheat flour up to a level of 10% (flour basis) and in durum wheat flour up to 20% produces bread without any negative effect in quality attributes such as color, hardness, and flavor and reasonable acceptance offering promising nutritious and healthy alternative to consumers. Increasing levels of substitution (30 and 50%) resulted in decreasing dough strength, extensibility, and loaf volume, due to the replacement of gluten by the added protein. Overall acceptability scores of these breads were found to be very low. The durum flour can be substituted with nongluten flours up to 10% more than the bread wheat flour because of its stronger gluten matrix and better dough rheological characteristics.  相似文献   

4.
Proso millet is a nutritious, sustainable, and gluten free food which is currently underutilized. They can be incorporated into the grain industry and provide much needed healthy alternatives. Efficient grinding method should be adopted for easy incorporation. This study aimed to investigate the effect of three different methods of grinding namely, roller milling (RM), pin milling (PM), and hammer milling (HM) on proso millet flour rheology and baking properties for food application. The milling flow sheet was developed toward the production of the quality whole grain flour. The particle size distribution of all the flours showed bi-modal distribution except for the RM flour. The PM produced the flour with the finest particles with geometric mean diameter of 82 μm. The study also revealed that starch damage in the PM flour (4.64%) was higher than RM (2.46%) and HM flour (2.51%). The nutritional composition was not significantly affected by different grinding methods. Pasting properties of the flour were also affected by the grinding method applied. Rapid Visco Analysis profile showed pin mill flour to have a higher peak viscosity (PV) (2,295 cP) compared to HM (2,065 cP) and RM flour (2,130 cP). Finally, this study demonstrated that the production of bread from proso millet flour with desirable quality and texture is possible. The grinding method did not affect the specific volume of bread loaves and C-cell characteristics. The specific volume of the breads ranged from 2.40 to 2.52 cm3/g. This study will help in promoting and producing value-added proso millet food products with enhanced nutritional quality.  相似文献   

5.
ABSTRACT:  Breadmaking was performed with cellulose-blended wheat flour. Cellulose granules (7 types) of various sizes (diameter) were prepared by kneading. With increase of the blend percent of the cellulose samples from 10% to 20%, breadmaking properties such as bread height and specific volume (SV) gradually decreased in every sample; however, the decreasing levels of the properties in 7 types of various sizes varied. The decrease of bread height and SV was associated with the size of the cellulose granule. It was observed at both 10% and 20% blends that the same bread height and SV as for bread baked with only wheat flour could be obtained when the diameter of cellulose granule was above 154 μm in cellulose/wheat flour breadmaking, while they gradually decreased with granules below 154 μm. When the largest cellulose granules were mechanically ground to make smaller ones, the bread height and SV decreased with increasing grinding time. It was ascertained that the size of the cellulose granule was important for breadmaking properties. Cellulose-blended wheat flour was subjected to mixograph tests. When cellulose granules above 154-μm dia were blended with wheat flour, the profile of the mixogram was almost the same as that for wheat flour; that is, the profile had a short mixing requirement and showed a viscous gluten matrix. However, when cellulose granules below 81-μm dia were blended, a different curve showing a nonviscous dough due to breakdown of the gluten protein was observed, as ascertained by microscopy. Farmograph test showed that the amount of the released gas from cellulose-blended bread dough increased with decrease of the size of the cellulose granule due to breakdown of the gluten protein.  相似文献   

6.
BACKGROUND: Maize, one of the suitable grains for coeliac consumption, is, together with rice, the most cultivated cereal in the world. However, the inclusion of maize flour in gluten‐free bread is a minority and studies are scarce. This paper analyses the influence of different maize flour types and their particle sizes on the quality of two types of bread without gluten (80% and 110% water in the formulation) obtained from them. We also analysed the microstructure of the dough and its behaviour during the fermentation. RESULTS: Finer flours had a lower dough development during fermentation in all cases. Among the different types of flour, those whose microstructure revealed compact particles were those which had higher specific bread volume, especially when the particle size was greater. Among the formulations, the dough with more water gave breads with higher specific volume, an effect that was more important in more compact flours. The higher volume breads had lower values of hardness and resilience. CONCLUSION: The type of corn flour and mainly its particle size influence significantly the dough development of gluten‐free bread during fermentation and therefore the final volume and texture of the breads obtained. The flours having coarser particle size are the most suitable for making gluten‐free maize bread. © 2012 Society of Chemical Industry  相似文献   

7.
The effect of soybean flour on gluten‐free bread quality was studied. Full‐fat enzyme‐active, semiactive and inactive soybean flours were evaluated. Active soybean flour improved the volume and structure of gluten‐free bread, while semiactive and inactive soybean flours did not have positive effects on bread quality. The particle size and concentration of the soybean flours also affected bread quality. Levels of addition between 125 and 150 g kg?1 and particle sizes between 90 and 120 µm of active soybean flour yielded the best results. Heating the active soybean flour destroyed its improving effect. The analysis of proteins by sodium dodecyl sulphate polyacrylamide gel electrophoresis and size exclusion chromatography showed that heating soybean flour at 60–200°C caused protein aggregation. The overall results indicated that the addition of active soybean flour improved gluten‐free bread quality, and this effect seemed to be due to both the structural proteins and the enzymatic activities of the soybean flour. Copyright © 2004 Society of Chemical Industry  相似文献   

8.
Bread is a major staple food consumed daily in all parts of the world. A significant part of the human population cannot tolerate gluten, a storage protein found in wheat, rye and barley, and therefore, products made from alternative cereals are required. During this study, the bread-making potential of seven gluten-free flours, wheat and wholemeal wheat flour was compared. Fermentation potential of the different flours was determined, showing that dough development height of gluten-free and wholemeal wheat samples was lower than for wheat and oat flour. Apart from standard bread quality parameters such as loaf-specific volume and physical crumb texture, also water activity and shelf life have been determined. The shelf life of gluten-free breads was reduced compared to wheat bread. Aroma profiles were evaluated by a trained panel. Wheat, oat and wholemeal wheat breads were liked moderately, while the remaining samples had lower liking scores. Crumb grain characteristics were investigated using image analysis, and microstructure was observed by scanning electron microscopy. Overall, only breads produced from oat flour were of similar quality to wheat bread, and the utilization of buckwheat, rice, maize, quinoa, sorghum and teff flours resulted in breads of inferior quality.  相似文献   

9.
馒头是我国居民的传统主食之一。随着馒头机械化生产和市场化销售比例增加,馒头产业得到较快发展。在工业化馒头制作条件下,小麦品种特性及其面粉的馒头制作适宜性,尤其是面粉质量的稳定性,显著影响馒头的产品质量、消费体验及工业化生产的经济效益。选用豫西南地区生产上种植面积大、代表性较强的小麦品种为原料,分析其小麦粉品种的理化特性,研究馒头制作的适宜性及其小麦粉品种质量和馒头特性之间的关系。结果表明,豫西南小麦粉湿面筋含量较高,但面筋指数还有待改进;优质小麦占比有待提高;小麦粉色泽红绿值(a*值)、黄蓝值(b*值)、面筋指数、粉质参数的面团软化度、拉伸参数的拉伸面积及吹泡参数的面团延展性,是评价馒头粉质量的重要参考指标。小麦品种郑麦119、平麦998、陕道198、郑麦1342、郑麦1860比较适合制作馒头。  相似文献   

10.
Samples of 12 hard winter wheats and their flours that produced breads varying in crumb grain scores were studied for 38 quality parameters including: wheat physical and chemical characteristics; flour ash and protein contents, starch damage, swelling power, pasting characteristics, and flour particle size distribution; dough properties determined by a mixograph; and breadmaking properties for pup loaves (100g flour). Only two parameters, the protein content of wheat and the granulation of flour, showed significant correlations with bread crumb grain scores. Protein content of wheat ranging 12.9%- 14.5% determined by an NIR method showed a weak inverse relationship (r =-0.61, p〈0.05) with bread crumb grain score. Flour particle size distribution measured by both Alpine Air Jet Sieve and NIR methods revealed that the weight wt % of particles less than 38 μ m in size and representing 9.6% - 19.3 % of the flour weights was correlated positively (r =0.78, p 〈 0.01) with crumb grain score, whereas wt % of flour particles larger than 125μm had an inverse relationship (r =-0.60, p〈0.05) with crumb grain score.  相似文献   

11.
Bread wheat flour presents specific nutrient deficiencies, such as some essential amino acids and this drawback could be tackled by adding ingredients that contain them in high amounts. Therefore, this study aims at developing new types of flours as well as at analysing enriched flours and baked derived products, which combine the compositional and sensory characteristics of wheat bread with some peculiar nutritional properties of black soldier fly prepupae (Hermetia illucens). These composite flours were obtained by mixing “Italian type 1” semi-whole wheat flour (W = 300) with flour obtained from prepupae of black soldier fly (20 g and 40 g/1 kg composite flour). Chemical, physical, and rheological analyses were carried out for each of the flour mixtures. Moisture, ash, gluten, total protein content, falling number, strength, tenacity, extensibility, amino acid profile of doughs and breads were analysed as well. An increase in the content of essential amino acids in doughs and baked products was obtained and also led to an improvement in bread texture.  相似文献   

12.
Manufacturing of bread from rice flour only presents technological difficulty because the rice is gluten-free and gluten is the most important structure forming protein. By using wheat and rice flour mixture, this problem can be avoided, and end product is enriched by rice-oil constituents. In this paper fatty acids composition, with an emphasis on total saturated, and total unsaturated fatty acids, rheological and baking properties of wheat–rice flour mixture (70:30 w/w) were investigated. The results show that wheat–rice flour mixture has better fatty acids composition with higher content of stearic, arachidic, lignoceric, oleic, and phthalic acids compared to wheat flour. Also, wheat flour did not include myristic, arachidic, lignoceric and linolenic acids, so rice flour addition made fatty acids profile richer as number of constituents is higher, nine instead six. The content of total unsaturated fatty acids content was higher in wheat–brown rice flour mixture than in wheat flour and in wheat–white rice flour mixture. When rice flour was added to wheat flour the rheological properties were changed: flour mixture had less water absorption, less degree of softening, longer development time, higher gelatinization temperature, but better stability and finally, better quality number and group than wheat flour. So, the wheat and rice flour mixture can be considered as a good quality flour and can be used for making good quality wheat-rice bread and cake.  相似文献   

13.
对小麦进行适度脱皮,既能去除粗纤维和表面污染物,还能较好的保留微量营养素.以高筋、中筋和低筋小麦为原料,研究4%脱皮率对不同筋力小麦粉及其馒头品质的影响.结果表明,高筋和低筋小麦脱皮后糊化参数均有所提高,而中筋小麦有所下降;脱皮后,高筋、中筋和低筋小麦粉破损淀粉质量分数分别增加了6.0%、2.6%和4.2%;高筋和低筋...  相似文献   

14.
Soybean (full‐fat and defatted) and barley flours were incorporated into wheat flour at 5, 10, 15 and 20% substitution levels. The gluten content, sedimentation value and water absorption capacity of the flour blends and the mixing time of the dough decreased with increase in the level of soybean and barley flour separately and in combinations. Protein and glutelin contents increased significantly on blending of soyflour (full‐fat and defatted) to bread wheat flour. The breads prepared from the blends also varied in their loaf weight, loaf volume and sensory characteristics. The bread volume decreased with increasing amount of non‐wheat flour substitution. The crumb colour changed from creamish white to dull brown and a gradual hardening of crumb texture was observed as the addition of soybean (full‐fat and defatted) and barley flours increased. At the higher levels, the acceptability declined because of the compact texture of the crumb and the strong flavour of the product. The addition of 10% of soyflour (full‐fat and defatted) or 15% of barley flour, full‐fat soy + barley or defatted soy + barley flour to bread flour produced acceptable bread.  相似文献   

15.
BACKGROUND: To increase pulse consumption, pita bread was fortified with pulse flours milled from green lentils, navy beans and pinto beans, which were ground to produce fine and coarse flours. Pita breads were prepared using composite flours containing pulse flours (25, 50, 75%) and wheat flour or 100% pulse flours and adjusting the amount of water required for mixing based on farinograph water absorption. Pita bread quality was evaluated according to diameter, pocket height, specific loaf volume, texture and crust colour. RESULTS: Blends made from pulse flours with coarse particle size showed higher rates of water absorption. All composite flours and 100% pulse flours produced pitas with pockets, confirming their suitability for this product. Crust colour of pitas was affected less by navy bean flour than by lentil flour. Pita breads made with pinto bean flour were superior in texture. Overall, navy and pinto bean flours appeared more suitable for pita bread. Flours with coarse particle sizes produced pitas with better colour and texture. Sensory parameters of pitas containing 25% coarse pinto or navy bean flour were as good as or better than those from the wheat control. CONCLUSION: Acceptable pita breads can be made using pulse flours, although the substitution level is limited to 25%. Copyright © 2012 Society of Chemical Industry  相似文献   

16.
选取市售8种颗粒小麦粉样品和1种普通小麦粉,测试评价二者的颗粒特性、理化品质、溶剂保持能力的区别,制作挂面以评价颗粒小麦粉的加工品质特性。结果表明,颗粒小麦粉的粒径分布与普通小麦粉之间差异显著(P<0.05),普通小麦粉中粒径(D50)为60.32μm,颗粒小麦粉中粒径(D50)均大于77.43μm。与普通小麦粉相比,颗粒小麦粉灰分和损伤淀粉含量低,面筋指数高、面筋质量好。除乳酸保持能力外,颗粒小麦粉的其余三种溶剂保持能力均显著低于普通小麦粉(P<0.05)。颗粒小麦粉挂面拥有良好的柔韧性和耐煮性,干物质吸水率和蒸煮损失率显著高于普通小麦粉挂面(P<0.05)。颗粒小麦粉挂面煮后的硬度、粘附性较低,延伸性较好,表现出较好的质地及爽滑不易断的特征。  相似文献   

17.
The effect of reducing dough pH to 4.2 and addition of 2–4% gluten on rheological and pasting properties of sound and sprouted wheat flours are reported. Baking properties studied using "Medium Time Fermentation" and "Short Time Fermentation" methods revealed that an acceptable bread could be produced from even highly sprouted wheat by lowering the pH and adding 4% vital gluten to the flour, and using the "Short Time Fermentation Method".  相似文献   

18.
Whole grains of a hard-type wheat cultivar ‘1CW’ (No. 1 Canada Western Red Spring) were polished from the outer layer to the inner layer by 10% of the total grain weight using a modified rice-polisher. The polished flours of three fractions; C-1, C-5, and C-8 corresponding to 100–90%, 60–50% and 30–0% layer of the 1CW grain, respectively were used in this study. Effects of fungal α-amylase on polished flour substitution for the common wheat flour CW of 1CW on rheological or physicochemical dough properties and bread qualities were studied. When the polished flours were substituted for CW without fungal α-amylase, the mixing tolerance index of dough in a farinograph and all parameters of viscoelastic properties significantly increased rather than those of CW alone. As a result, baking qualities of breads made from the substituted flours were significantly inferior. But, the polished flours increased the total gas generation significantly during fermentation, as compared with CW alone. The addition of fungal α-amylase to polished flour substituted CW distinctly developed gluten matrix in the SEM images and produced large amounts of the generated gas during fermentation. Therefore, the loaf volume and firmness of breads were improved by the combined additions of polished flours and fungal α-amylase. Especially, the C-8 of the innermost fraction was more susceptible to affection of fungal α-amylase among all polished flours, and resulted in improvement of gas cell distribution and softness of breadcrumbs without lowering the loaf volume as compared with CW bread.  相似文献   

19.
The disrupted gluten structure of infested wheat flours leads to low‐quality doughs unusable in bread‐making processes. Enzymes are replacing chemical treatments in the food industry as a tool to treat weak flours. Glucose oxidase is one of the most promising oxidative enzymes, although its efficiency compared with the alcohol‐soluble fraction of gluten proteins has not yet been demonstrated. If this enzyme could restore the broken covalent bonds between glutenin subunits, the gluten network of damaged wheat flour would recover its native structure and functionality. This treatment would allow bakers to use damaged flour, reducing the economic losses caused by this plague around Europe and North Africa. Electrophoretic studies demonstrated the formation of high‐molecular‐weight aggregates in the glutenin fraction, which had a characteristic thermal stability depending on enzyme dosage. Those molecular studies agreed with the bread‐making assays made with maximum enzyme dosage and microstructure determination. Overall results showed that glucose oxidase is a real alternative to traditionally used chemical oxidants. It acted specifically on the high‐molecular‐weight glutenin subunits of damaged wheat, forming dityrosine crosslinks between the wheat proteins, which reinforced the gluten network and gave away the dough functionality. Copyright © 2007 Society of Chemical Industry  相似文献   

20.

ABSTRACT

Response surface methodology was applied to develop a standard method for gluten peak tester. Four variables – flour weight, temperature, solvent and rpm – were varied as per the center composite design, and the responses – torque and peak maximum time – were analyzed. Flour–solvent interaction was observed to be the most significant factor impacting the peak torque for whole meal and hard wheat flours while flour (g) and rpm were the most significant for soft wheat flour and insignificant for whole meal flour. The setting 8.5 g flour, 9.5 g solvent (0.5 M CaCl2), 34C temperature and 1,900 rpm was obtained as the standard setting applicable to whole meal as well as refined flours from soft and hard wheats.

PRACTICAL APPLICATIONS

Gluten quality is an important criterion to predict flour performance in cereal processing industry. The gluten peak tester has been recently introduced as a sensitive and rapid way of testing wheat gluten quality. The current research was designed to optimize the gluten peak tester to work with wheat varieties with a wide range of protein contents so as to lay a baseline for method development to assess gluten quality of different wheat varieties/lines within a short time span with minimum sample requirements which is very critical for the breeding industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号