首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study proposes a new scheme for the sampled-data representation of nonlinear systems with time-delayed multi-input. The proposed scheme is based on the Taylor-series expansion and zero-order hold assumption. The mathematical structure of a new discretization scheme is explored. On the basis of this structure, the sampled-data representation of nonlinear systems including time-delay is derived. The new scheme is applied to nonlinear systems with two inputs and then the delayed multi-input general equation is derived. The resulting time-discretization provides a finite-dimensional representation of nonlinear control systems with time-delay enabling existing controller design techniques to be applied to them. In order to evaluate the tracking performance of the proposed scheme, an algorithm is tested for some of the examples including maneuvering of an automobile and a 2-DOF mechanical system.  相似文献   

2.
In this paper, we propose a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption. This scheme is applied to the sampled-data representation of a non-affine nonlinear system with constant input time-delay. The mathematical expressions of the discretization scheme are presented and the ability of the algorithm is tested for some of the examples. The proposed scheme provides a finite-dimensional representation for nonlinear systems with time-delay enabling existing controller design techniques to be applied to them. For all the case studies, various sampling rates and time-delay values are considered.  相似文献   

3.
An input time delay always exists in practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via digital computers. In this paper a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption is proposed. The mathematical structure of the new discretization method is analyzed. On the basis of this structure the sampled-data representation of nonlinear systems with time-delayed multi-input is presented. The delayed multi-input general equation has been derived. In particular, the effect of the time-discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. Additionally, hybrid discretization schemes that result from a combination of the scaling and squaring technique (SST) with the Taylor series expansion are also proposed, especially under conditions of very low sampling rates. Practical issues associated with the selection of the method’s parameters to meet CPU time and accuracy requirements, are examined as well. A performance of the proposed method is evaluated using a nonlinear system with time delay: maneuvering an automobile.  相似文献   

4.
This paper investigates the problem of global finite-time stabilization in probability for a class of stochastic nonlinear systems. The drift and diffusion terms satisfy lower-triangular or upper-triangular homogeneous growth conditions. By adding one power integrator technique, an output feedback controller is first designed for the nominal system without perturbing nonlinearities. Based on homogeneous domination approach and stochastic finite-time stability theorem, it is proved that the solution of the closed-loop system will converge to the origin in finite time and stay at the origin thereafter with probability one. Two simulation examples are presented to illustrate the effectiveness of the proposed design procedure.  相似文献   

5.
In this paper, the problem of adaptive practical tracking is investigated by output feedback for a class of uncertain nonlinear systems subject to nonsymmetric dead-zone input nonlinearity with parameters of dead-zone being unknown. Instead of constructing the inverse of dead-zone nonlinearity, an adaptive robust control scheme is developed by designing an output compensator including two dynamic gains based respectively on identification and non-identification mechanism. With the aid of dynamic high-gain scaling approach and Backstepping method, stability analysis of the closed-loop system is proceeded using non-separation principle, which shows that the proposed controller guarantees that all closed-loop signal is bounded while the output of system tracks a broad class of bounded reference trajectories by arbitrarily small error prescribed previously. Finally, two examples are given to illustrate our controller effective.  相似文献   

6.
This paper addresses the problem of global output feedback control for a class of nonlinear time-delay systems. The nonlinearities are dominated by a triangular form satisfying linear growth condition in the unmeasurable states with an unknown growth rate. With a change of coordinates, a linear-like controller is constructed, which avoids the repeated derivatives of the nonlinearities depending on the observer states and the dynamic gain in backstepping approach and therefore, simplifies the design procedure. Using the idea of universal control, we explicitly construct a universal-type adaptive output feedback controller which globally regulates all the states of the nonlinear time-delay systems.  相似文献   

7.
This paper deals with the problem of partial state observer design for linear systems that are subject to time delays in the measured output as well as the control input. By choosing a set of appropriate augmented Lyapunov–Krasovskii functionals with a triple-integral term and using the information of both the delayed output and input, a novel approach to design a minimal-order observer is proposed to guarantee that the observer error is ε-convergent with an exponential rate. Existence conditions of such an observer are derived in terms of matrix inequalities for the cases with time delays in both the output and input and with output delay only. Constructive design algorithms are introduced. Numerical examples are provided to illustrate the design procedure, practicality and effectiveness of the proposed observer.  相似文献   

8.
This paper proposes a new method of discretization for nonlinear systems using a Taylor series expansion and the zero-order hold assumption. The method is applied to sampled-data representations of nonlinear systems with input time delays. The delayed input varies in time and its amplitude is bounded. The maximum time-delayed input is assumed to be two sampling periods. The mathematical expressions of the discretization method are presented and the ability of the algorithm is tested using several examples. A computer simulation is used to demonstrate that the proposed algorithm accurately discretizes nonlinear systems with variable time-delayed inputs.  相似文献   

9.
In this paper, we aim to solve the control problem of nonlinear affine systems, under the condition of the input deadzone and output constraint with the external unknown disturbance. To eliminate the effects of the input deadzone, a Radial Basis Function Neural Network (RBFNN) is introduced to compensate for the negative impact of input deadzone. Meanwhile, we design a barrier Lyapunov function to ensure that the output parameters are restricted. In support of the barrier Lyapunov method, we build an adaptive neural network controller based on state feedback and output feedback methods. The stability of the closed-loop system is proven via the Lyapunov method and the performance of the expected effects is verified in simulation.  相似文献   

10.
This paper investigates decentralized output feedback stabilization problem for a class of switched stochastic high-order systems with time-varying state/input delays. With the help of coordinate transformations, a scaling gain is incorporated into the observers and controllers for the nominal system. Based on the homogeneous domination approach and stochastic Lyapunov–Krasovskii stability theorem, it is shown that global asymptotic stability in probability of the closed-loop system can be implemented by tuning the scaling gain. Two examples are given to demonstrate the feasibility of the proposed control method.  相似文献   

11.
This paper investigates an adaptive controller for a class of Multi Input Multi Output (MIMO) nonlinear systems with unknown parameters, bounded time delays and in the presence of unknown time varying actuator failures. The type of considered actuator failure is one in which some inputs may be stuck at some time varying values where the values, times and patterns of the failures are unknown. The proposed approach is constructed based on a backstepping design method. The boundedness of all the closed-loop signals is guaranteed and the tracking errors are proved to converge to a small neighborhood of the origin. The proposed approach is employed for a double inverted pendulums benchmark and a chemical reactor system. The simulation results show the effectiveness of the proposed method.  相似文献   

12.
13.
Identification of statistical patterns from observed time series of spatially distributed sensor data is critical for performance monitoring and decision making in human-engineered complex systems, such as electric power generation, petrochemical, and networked transportation. This paper presents an information-theoretic approach to identification of statistical patterns in such systems, where the main objective is to enhance structural integrity and operation reliability. The core concept of pattern identification is built upon the principles of Symbolic Dynamics, Automata Theory, and Information Theory. To this end, a symbolic time series analysis method has been formulated and experimentally validated on a special-purpose test apparatus that is designed for data acquisition and real-time analysis of fatigue damage in polycrystalline alloys.  相似文献   

14.
Huang YJ  Way HK 《ISA transactions》2001,40(3):235-243
Sliding mode control methods have been used widely since they provide robustness against parameter variations and disturbances. This paper focuses on the problem of a robust output-sliding control design for linear uncertain multi-input multi-output time-varying systems with norm-bounded uncertainty. Output signals are used for the definition of switching hypersurfaces. The formulation of a control law is emphasized. Output tracking can be achieved against a class of time varying parameter variations and external disturbances. The effectiveness of the proposed output-sliding control is confirmed by an application example.  相似文献   

15.
16.
This paper investigates the problem of leader-following output consensus of a linear discrete-time multi-agent system with input saturation and external disturbances. Low-gain state feedback technique and output regulation theory are used to deal with the output consensus of multi-agent systems with input saturation and external disturbances. Both the cases with identical and non-identical disturbances are discussed in the multi-agent systems. For the case of identical external disturbance, the output consensus can be attained when the directed graph has no loop and there exists at least one directed path from the leader to every follower agent. For the case of non-identical external disturbances, the output consensus can be achieved if the directed graph is strongly connected and detailed balanced, and at least one follower can have access to the information of the leader. Numerical simulation results are presented to demonstrate the validation of the proposed design.  相似文献   

17.
This paper presents a novel observer-based decentralized hybrid adaptive fuzzy control scheme for a class of large-scale continuous-time multiple-input multiple-output (MIMO) uncertain nonlinear systems whose state variables are unmeasurable. The scheme integrates fuzzy logic systems, state observers, and strictly positive real conditions to deal with three issues in the control of a large-scale MIMO uncertain nonlinear system: algorithm design, controller singularity, and transient response. Then, the design of the hybrid adaptive fuzzy controller is extended to address a general large-scale uncertain nonlinear system. It is shown that the resultant closed-loop large-scale system keeps asymptotically stable and the tracking error converges to zero. The better characteristics of our scheme are demonstrated by simulations.  相似文献   

18.
Yan B  Tian Z  Shi S  Weng Z 《ISA transactions》2008,47(4):386-394
In this paper, a novel fault detection and identification (FDI) scheme for a class of nonlinear systems is presented. First of all, an augment system is constructed by making the unknown system faults as an extended system state. Then based on the ESO theory, a novel fault diagnosis filter is constructed to diagnose the nonlinear system faults. An extension to a class of nonlinear uncertain systems is then made. An outstanding feature of this scheme is that it can simultaneously detect and identify the shape and magnitude of the system faults in real time without training the network compared with the neural network-based FDI schemes. Finally, simulation examples are given to illustrate the feasibility and effectiveness of the proposed approach.  相似文献   

19.
20.
Though many studies are focused on the stabilization of nonlinear systems with time-varying delay, they fail to involve the dynamic regulation without on-line optimization commonly. For this sake, feedback linearization, Lyapunov-Razumikhin theorem and polynomial approximation theorem are employed here to verify that the multi-dimensional Taylor network (MTN) controller can stabilize the single input single output (SISO) nonlinear time-varying delay systems through dynamic regulation of the system output with no need for on-line optimization. Here, the design of the controller is transformed into a convex optimization problem, which is tackled by means of the appropriate optimization method. Like its PD-like controller peers, the MTN controller functions well in eliminating the dependence on the system model. The effectiveness of the proposed approach is demonstrated and confirmed via two examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号