首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly[(R,S)‐3‐hydroxybutyrate] oligomers containing dihyroxyl (PHB‐diol), dicarboxylic acid (PHB‐diacid) and hydroxyl‐carboxylic acid (a‐PHB) end functionalities were obtained by the anionic polymerization of β‐butyrolacton (β‐BL). Ring opening anionic polymerization of β‐BL was initiated by a complex of 18‐Crown‐6 with γ‐hydroxybutyric acid sodium salts (for PHB‐diol and a‐PHB) or succinic acid disodium salt (for PHB‐diacid). Dihydroxyl functionalization was formed by the termination of polymerization with bromo‐ethanol or bromo‐decanol while the others were done by protonation. Hydroxyl and/or carboxylic acid functionalized PHB oligomers with ceric salts were used to initiate the polymerization of methylmethacrylate (MMA). PHB‐b‐PMMA block copolymers obtained by this way were purified by fractional precipitation and characterized using 1H‐NMR and 13C‐NMR, gel permeation chromatography (GPC), and thermal analysis (DSC and TGA) techniques. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 965–973, 2002  相似文献   

2.
A series of poly(R‐3‐hydroxybutyrate)/poly(ε‐caprolactone)/1,6‐hexamethylene diisocyanate‐segmented poly(ester‐urethanes), having different compositions and different block lengths, were synthesized by one‐step solution polymerization. The molecular weight of poly(R‐3‐hydroxybutyrate)‐diol, PHB‐diol, hard segments was in the range of 2100–4400 and poly(ε‐caprolactone)‐diol, PCL‐diol, soft segments in the range of 1080–5800. The materials obtained were investigated by using differential scanning calorimetry, wide angle X‐ray diffraction and mechanical measurements. All poly(ester‐urethanes) investigated were semicrystalline with Tm varying within 126–148°C. DSC results showed that Tg are shifted to higher temperature with increasing content of PHB hard segments and decreasing molecular weight of PCL soft segments. This indicates partial compatibility of the two phases. In poly(ester‐urethanes) made from PCL soft segments of molecular weight (Mn ≥ 2200), a PCL crystalline phase, in addition to the PHB crystalline phase, was observed. As for the mechanical tensile properties of poly(ester‐urethane) cast films, it was found that the ultimate strength and the elongation at the breakpoint decrease with increasing PHB hard segment content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 703–718, 2002  相似文献   

3.
A new and promising method for the diversification of microbial polyesters based on chemical modifications is introduced. Poly(3‐hydroxy alkanoate)‐g‐(poly(tetrahydrofuran)‐b‐poly(methyl methacrylate)) (PHA‐g‐(PTHF‐b‐PMMA)) multigraft copolymers were synthesized by the combination of cationic and free radical polymerization. PHA‐g‐PTHF graft copolymer was obtained by the cationic polymerization of THF initiated by the carbonium cations generated from the chlorinated PHAs, poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV), and poly(3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) (PHBHx) in the presence of AgSbF6. Therefore, PHA‐g‐PTHF graft copolymers with hydroxyl ends were produced. In the presence of Ce+4 salt, these hydroxyl ends of the graft copolymer can initiate the redox polymerization of MMA to obtain PHA‐g‐(PTHF‐b‐PMMA) multigraft copolymer. Polymers obtained were purified by fractional precipitation. In this manner, their γ‐values (volume ratio of nonsolvent to the solvent) were also determined. Their molecular weights were determined by GPC technique. The structures were elucidated using 1H‐NMR and FTIR spectroscopy. Thermal analyses of the products were carried out using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
The thermal decomposition mechanism of maleated poly(3‐hydroxybutyrate) (PHB) was investigated by FTIR and 1H NMR. The results of experiments showed that the random chain scission of maleated PHB obeyed the six‐membered ring ester decomposition process. The thermal decomposition behavior of PHB and maleated PHB with different graft degree were studied by thermogravimetry (TGA) using various heating‐up rates. The thermal stability of maleated PHB was evidently better than that of PHB. With increase in graft degree, the thermal decomposition temperature of maleated PHB gradually increased and then declined. Activation energy Ea as a kinetic parameter of thermal decomposition was estimated by the Flynn‐Wall‐Ozawa and Kissinger methods, respectively. It could be seen that approximately equal values of activation energy were obtained by both methods. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1789–1796, 2002; DOI 10.1002/app.10463  相似文献   

5.
Atactic poly(3‐hydroxybutyrate) (a‐PHB) and block copolymers of poly(ethylene glycol) (PEG) with poly(ε‐caprolactone) (PCL‐b‐PEG) were synthesized through anionic polymerization and coordination polymerization, respectively. As demonstrated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) measurements, both chemosynthesized a‐PHB and biosynthesized isotactic PHB (i‐PHB) are miscible with the PEG segment phase of PCL‐b‐PEGs. However, there is no evidence showing miscibility between both PHBs and the PCL segment phase of the copolymer even though PCL has been block‐copolymerized with PEG. Based on these results, PCL‐b‐PEG was added, as a compatibilizer, to both the PCL/a‐PHB blends and the PCL i‐PHB blends. The blend films were obtained through the evaporation of chloroform solutions of mixed components. Excitingly, the improvement in mechanical properties of PCL/PHB blends was achieved as anticipated initially upon the addition of PCL‐b‐PEG. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2600–2608, 2001  相似文献   

6.
A series of poly(ether–ester) copolymers were synthesized from poly(2,6 dimethyl‐1,4‐phenylene oxide) (PPO) and poly(ethylene terephthalate) (PET). The synthesis was carried out by two‐step solution polymerization process. PET oligomers were synthesized via glycolysis and subsequently used in the copolymerization reaction. FTIR spectroscopy analysis shows the coexistence of spectral contributions of PPO and PET on the spectra of their ether–ester copolymers. The composition of the poly(ether–ester)s was calculated via 1H NMR spectroscopy. A single glass transition temperature was detected for all synthesized poly(ether–ester)s. Tg behavior as a function of poly(ether–ester) composition is well represented by the Gordon‐Taylor equation. The molar masses of the copolymers synthesized were calculated by viscosimetry. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

7.
In this study, synthesis, characterization, partial hydrolysis, and salt formation of poly(2‐hydroxyethyl methacrylate)‐co‐poly(4‐vinyl pyridine), (poly(HEMA)‐co‐poly‐(4‐VP)) copolymers were investigated. The copolymers were synthesized by free radical polymerization using K2S2O8 as an initiator. By varying the monomer/initiator ratio, chain lengths of the copolymers were changed. The copolymers were characterized by gel permeation chromatography (GPC), viscosity measurements, 1H and 13C NMR and FTIR spectroscopies, elemental analysis, and end group analysis methods. The copolymers were partially hydrolyzed by p‐toluene sulfonic acid monohydrate (PTSA·H2O) and washed with LiOH(aq) solution to prepare electrorheological (ER) active ionomers, poly(Li‐HEMA)‐co‐poly(4‐VP). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3540–3548, 2006  相似文献   

8.
The crystallization kinetics of poly(butylene terephthalate) (PBT), poly(ethylene terephthalate) (PET), and their copolymers poly(1,4‐butylene‐co‐ethylene terephthalate) (PBET) containing 70/30, 65/35 and 60/40 molar ratios of 1,4‐butanediol/ethylene glycol were investigated using differential scanning calorimetry (DSC) at crystallization temperatures (Tc) which were 35–90 °C below equilibrium melting temperature . Although these copolymers contain both monomers in high proportion, DSC data revealed for copolymer crystallization behaviour. The reason for such copolymers being able to crystallize could be due to the similar chemical structures of 1,4‐butanediol and ethylene glycol. DSC results for isothermal crystallization revealed that random copolymers had a lower degree of crystallinity and lower crystallite growth rate than those of homopolymers. DSC heating scans, after completion of isothermal crystallization, showed triple melting endotherms for all these polyesters, similar to those of other polymers as reported in the literature. The crystallization isotherms followed the Avrami equation with an exponent n of 2–2.5 for PET and 2.5–3.0 for PBT and PBETs. Analyses of the Lauritzen–Hoffman equation for DSC isothermal crystallization data revealed that PBT and PET had higher growth rate constant Go, and nucleation constant Kg than those of PBET copolymers. © 2001 Society of Chemical Industry  相似文献   

9.
Blending of microbial polyester poly(3‐hydroxybutyrate) (PHB) with various dendritic polyester oligomers or dendrimers was achieved by solution casting to improve the film forming ability of PHB. Films of the blends were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron micrograph (SEM), and Fourier transform infrared spectroscopy (FTIR). It was revealed that there were mainly two types of interactions in the blending system: the plasticizing or lubricating effect of the low melting spherical dendrimers molecules improved the polymer chain mobility through the suppression of PHB crystallization in the blends; The dendrimers also functioned as crosslinking agents or antiplasticizing agents via weak hydrogen bonding to enhance the overall intermolecular interactions which decrease the chain mobility and thus cause the increase of glass transition temperature (Tg) of PHB. TGA results concluded that incorporating the dendrimers could retard the thermal decomposition of PHB and enhanced its thermal stability accordingly. With the above blend processes, the so‐obtained PHB possessed better film forming ability and even patterned surface structures. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:3782–3790, 2006  相似文献   

10.
Poly(3‐hydroxy octanoate) (PHO), poly(3‐hydroxy butyrate‐co‐3‐hydroxyvalerate) (PHBV), and linoleic acid were grafted onto chitosan via condensation reactions between carboxylic acids and amine groups. Unreacted PHAs and linoleic acid were eliminated via chloroform extraction and for elimination of unreacted chitosan were used 2 wt % of HOAc solution. The pure chitosan graft copolymers were isolated and then characterized by FTIR, 13C‐NMR (in solid state), DSC, and TGA. Microbial polyester percentage grafted onto chitosan backbone was varying from 7 to 52 wt % as a function of molecular weight of PHAs, namely as a function of steric effect. Solubility tests were also performed. Graft copolymers were soluble, partially soluble or insoluble in 2 wt % of HOAc depending on the amount of free primary amine groups on chitosan backbone or degree of grafting percent. Thermal analysis of PHO‐g‐Chitosan graft copolymers indicated that the plastizer effect of PHO by means that they showed melting transitions Tms at 80, 100, and 113°C or a broad Tms between 60.5–124.5°C and 75–125°C while pure chitosan showed a sharp Tm at 123°C. In comparison of the solubility and thermal properties of graft copolymers, linoleic acid derivatives of chitosan were used. Thus, the grafting of poly(3‐hydroxyalkanoate) and linoleic acid onto chitosan decrease the thermal stability of chitosan backbone. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103:81–89, 2007  相似文献   

11.
Graft copolymers of natural rubber (NR) and methyl methacrylate (MMA) were prepared using cumene hydroperoxide and tetraethylene pentamine as redox initiators via the semibatch emulsion polymerization technique. Various molar percentage ratios of NR/MMA were studied in the grafting reaction (i.e., 95/5, 90/10, 80/20, 70/30, and 60/40). The graft copolymer with a 70/30 molar ratio was selected and used to prepare rubber blends with cassava starch. The starch was used at levels of 0, 20, 40, and 60 phr. Another set of rubber blends was prepared for comparison purposes. The NR‐g‐poly(MMA) (PMMA, 75 phr) was blended with 25 phr of NR air dried sheets (ADS) and a given level of the cassava starch. We found that the Mooney viscosity, shear stress, and shear viscosity increased with an increasing concentration of cassava starch. This may be attributed to the chemical interactions between the polar groups of the NR‐g‐PMMA and the cassava starch. The blends were later compounded using a compounding formulation according to ASTM D 3184‐89. A similar short delay onset of vulcanization (i.e., approximately 1 min) was observed for the whole set of compounds under study. However, different curing characteristics were observed for the blends of NR‐g‐PMMA–cassava starch and NR‐g‐PMMA–ADS–cassava starch. The NR‐g‐PMMA–cassava starch compounds exhibited two‐stage curing characteristics. The curing curve had a slight reversion at a testing time of approximately 8 min. The shear modulus then abruptly increased with an increasing testing time in the range of 20–60 min. The curing curves for NR‐g‐PMMA–ADS–cassava starch blends exhibited a single curing stage with a shear modulus that increased slightly with the testing time was increased from 20 to 60 min. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1453–1463, 2003  相似文献   

12.
A two‐step procedure was used to synthesize the cellulose acetate butyrate and poly(ethylene glycol) graft copolymer (CAB‐g‐PEG). By choosing the appropriate composition, the crosslinked graft copolymer or not could be obtained. Then, the CAB‐g‐PEG copolymer was blended with poly(3‐hydroxybutyrate) (PHB), to further improve the mechanical properties of PHB. The results indicated that PHB and CAB‐g‐PEG that were not crosslinked were miscible over the entire composition range. As the CAB‐g‐PEG copolymer increased in the PHB/CAB‐g‐PEG blends, the melting temperature of the blends decreased, the crystallization of PHB became more difficult, and the crystallinity of the blend and PHB phase all decreased. The tensile properties and impact strength of the PHB/CAB‐g‐PEG blends were superior to the PHB/CAB blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1471–1478, 2006  相似文献   

13.
The thermal degradation kinetics of poly(3‐hydroxybutyrate) (PHB) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [poly(HB–HV)] under nitrogen was studied by thermogravimetry (TG). The results show that the thermal degradation temperatures (To, Tp, and Tf) increased with an increasing heating rate (B). Poly(HB–HV) was thermally more stable than PHB because its thermal degradation temperatures, To(0), Tp(0), and Tf(0)—determined by extrapolation to B = 0°C/min—increased by 13°C–15°C over those of PHB. The thermal degradation mechanism of PHB and poly(HB–HV) under nitrogen were investigated with TG–FTIR and Py–GC/MS. The results show that the degradation products of PHB are mainly propene, 2‐butenoic acid, propenyl‐2‐butenoate and butyric‐2‐butenoate; whereas, those of poly(HB–HV) are mainly propene, 2‐butenoic acid, 2‐pentenoic acid, propenyl‐2‐butenoate, propenyl‐2‐pentenoate, butyric‐2‐butenoate, pentanoic‐2‐pentenoate, and CO2. The degradation is probably initiated from the chain scission of the ester linkage. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1530–1536, 2003  相似文献   

14.
The miscibility and crystallization kinetics of the blends of random poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [P(HB‐co‐HV)] copolymer and poly(methyl methacrylate) (PMMA) were investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that P(HB‐co‐HV)/PMMA blends were miscible in the melt. Thus the single glass‐transition temperature (Tg) of the blends within the whole composition range suggests that P(HB‐co‐HV) and PMMA were totally miscible for the miscible blends. The equilibrium melting point (T°m) of P(HB‐co‐HV) in the P(HB‐co‐HV)/PMMA blends decreased with increasing PMMA. The T°m depression supports the miscibility of the blends. With respect to the results of crystallization kinetics, it was found that both the spherulitic growth rate and the overall crystallization rate decreased with the addition of PMMA. The kinetics retardation was attributed to the decrease in P(HB‐co‐HV) molecular mobility and dilution of P(HB‐co‐HV) concentration resulting from the addition of PMMA, which has a higher Tg. According to secondary nucleation theory, the kinetics of spherulitic crystallization of P(HB‐co‐HV) in the blends was analyzed in the studied temperature range. The crystallizations of P(HB‐co‐HV) in P(HB‐co‐HV)/PMMA blends were assigned to n = 4, regime III growth process. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3595–3603, 2004  相似文献   

15.
Atactic poly(methylmethacrylate), aPMMA, was blended with poly(3‐D(−)hydroxybutyrate), PHB, up to a maximum composition of 25% of polyester, at 190°C in a Brabender‐like apparatus. The resulting blends quenched from the melt to room temperature were completely amorphous, and exhibited a single glass transition using DSC and DMTA, indicating miscibility of the components for this time–temperature history. Tensile experiments showed that at room temperature the 10/90 and 20/80 PHB/aPMMA blends exhibited higher values of strain at break, and slight decreases of the modulus and stress at break compared to neat aPMMA. The tensile energy at break was almost twice that of neat aPMMA. Tensile tests were also performed at 80°C, at which point the 25/75 and 20/80 PHB/aPMMA blends are above Tg, while the 10/90 and neat aPMMA are below Tg. The stress–strain curves obtained were functions of the physical state of the amorphous phase, and also depended on the difference between the test temperatures and Tg. In particular, comparing the neat aPMMA and the blends, decreases of the modulus and stress at break and a respectable increase in the strain at break were observed in the latter. Finally, the results were commented considering the thermal degradation of PHB in the melt during the blend preparation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 746–753, 2000  相似文献   

16.
Diblock copolymers of poly(L ‐lactide)‐block‐poly(methyl methacrylate) (PLLA‐b‐PMMA) were synthesized through a sequential two‐step strategy, which combines ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP), using a bifunctional initiator, 2,2,2‐trichloroethanol. The trichloro‐terminated poly(L ‐lactide) (PLLA‐Cl) with high molecular weight (Mn,GPC = 1–12 × 104 g/mol) was presynthesized through bulk ROP of L ‐lactide (L ‐LA), initiated by the hydroxyl group of the double‐headed initiator, with tin(II) octoate (Sn(Oct)2) as catalyst. The second segment of the block copolymer was synthesized by the ATRP of methyl methacrylate (MMA), with PLLA‐Cl as macroinitiator and CuCl/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as catalyst, and dimethyl sulfoxide (DMSO) was chosen as reaction medium due to the poor solubility of the macroinitiator in conventional solvents at the reaction temperature. The trichloroethoxyl terminal group of the macroinitiator was confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H‐NMR spectroscopy. The comprehensive results from GPC, FTIR, 1H‐NMR analysis indicate that diblock copolymers PLLA‐b‐PMMA (Mn,GPC = 5–13 × 104 g/mol) with desired molecular composition were obtained by changing the molar ratio of monomer/initiator. DSC, XRD, and TG analyses establish that the crystallization of copolymers is inhibited with the introduction of PMMA segment, which will be beneficial to ameliorating the brittleness, and furthermore, to improving the thermal performance. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Poly(vinyl alcohol)‐initiated microwave‐assisted ring opening polymerization of ε‐caprolactone in bulk was investigated, and a series of poly(vinyl alcohol)‐graft‐poly(ε‐caprolactone) (PVA‐g‐PCL) copolymers were prepared, with the degree of polymerization (DP) of PCL side chains and the degree of substitution (DS) of PVA by PCL being in the range of 3–24 and 0.35–0.89, respectively. The resultant comb‐like PVA‐g‐PCL copolymers were confirmed by means of FTIR, 1H NMR, and viscometry measurement. The introduction of hydrophilic backbone resulted in the decrease in both melting point and crystallization property of the PVA‐g‐PCL copolymers comparing with linear PCL. With higher microwave power, the DP of PCL side chains and DS of PVA backbone were higher, and the polymerization reaction proceeded more rapidly. Both the DP and monomer conversion increased with irradiation time, while the DS increased first and then remained constant. With initiator in low concentration, the DP and DS were higher, while the monomer was converted more slowly. Microwaves dramatically improved the polymerization reaction in comparison of conventional heating method. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 3973–3979, 2007  相似文献   

18.
A new graft copolymers poly(aryl ether sulfone)‐graft‐polystyrene (PSF‐g‐PS) and poly(aryl ether sulfone)‐graft‐[polystyrene‐block‐poly(methyl methacrylate)] (PSF‐g‐(PS‐b‐PMMA)) were successfully prepared via atom transfer radical polymerisation (ATRP) catalyzed by FeCl2/isophthalic acid in N,N‐dimethyl formamide. The products were characterized by GPC, DSC, IR, TGA and NMR. The characterization data indicated that the graft copolymerization was accomplished via conventional ATRP mechanism. The effect of chloride content of the macroinitiator on the graft copolymerization was investigated. Only one glass transition temperature (Tg) was detected by DSC for the graft copolymer PSF‐g‐PS and two glass transition temperatures were observed in the DSC curve of PSF‐g‐(PS‐b‐PMMA). The presence of PSF in PSF‐b‐PS or PSF‐g‐(PS‐b‐PMMA) was found to improve thermal stabilities. © 2002 Society of Chemical Industry  相似文献   

19.
A straightforward strategy is described to synthesize poly(?‐caprolactone)‐graft‐poly(N‐isopropylacrylamide) (PCL‐g‐PNIPAAm) amphiphilic graft copolymers consisting of potentially biodegradable polyester backbones and thermoresponsive grafting chains. PCL with pendent chlorides was prepared by ring‐opening polymerization, followed by conversion of the pendent chlorides to azides. Alkyne‐terminated PNIPAAm was synthesized by atom transfer radial polymerization. Then, the alkyne end‐functionalized PNIPAAm was grafted onto the PCL backbone by a copper‐catalyzed azide–alkyne cycloaddition. PCL‐g‐PNIPAAm graft copolymers self‐assembled into spherical micelles comprised of PCL cores and PNIPAAm coronas. The critical micelle concentrations of the graft copolymers were in the range 7.8–18.2 mg L?1, depending on copolymer composition. Mean hydrodynamic diameters of micelles were in the range 65–135 nm, which increased as the length of grafting chains grew. PCL‐g‐PNIPAAm micelles were thermosensitive and aggregated upon heating. © 2014 Society of Chemical Industry  相似文献   

20.
A comparison of the thermal properties of two classes of poly(D,L ‐lactic‐glycolic acid) multiblock copolymers is reported. In particular, the results of differential scanning calorimetry, and thermogravimetric analysis of copolymers containing poly(ethylene glycol) (PEG) or diol‐terminated poly(ϵ‐caprolactone) (PCDT) segments are described. The influence of the chemical structure and the length of PEG and PCDT on thermal stability, degree of crystallinity and glass transition temperature (Tg ) is discussed. Finally, an evaluation of the hydrolytic behavior in conditions mimicking the physiological environment is reported. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1721–1728, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号