共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了正极材料、正极面密度、导电剂含量及电极结构对18650型LiFePO4锂离子电池高倍率充放电性能的影响。当D50为1.92μm,比表面积为11.4 m2/g,正极面密度为2.8 g/dm2,导电剂含量为4.0%时,电池具有较好的加工性能和倍率性能。相比于单极耳结构,双极耳结构电池的内阻减小了50%,为14 mΩ左右,且分布集中;5.00C充电和15.00C放电时的表面温升很小。在2.0~3.8 V充放电,优化后的20.00C、30.00C放电容量分别为1.00C时的96.6%、86.1%,1.00C充电、10.00C放电,第300次循环的容量保持率为86.3%。 相似文献
2.
定量分析商品化磷酸铁锂(LiFePO4)中的磁性杂质及含量,得出主要成分是含铁化合物或铁单质.通过逆向试差手段,在实验电池制作的合浆阶段添加铁粉,考察铁粉添加量对电池性能的影响.随着铁粉添加量从0增加到50.0×10-4%,电池首次充电(0.10 C至3.65 V)比容量由157.7 mAh/g升高至174.4 mAh/g,首次循环的库仑效率由85.7%下降到76.2%,与分容24 h的电压降由5.47 mV逐渐升至43.9 mV相对应.随着铁粉添加量从0增加到10.0×10-4%,高温(55℃)搁置7 d,绝对值电压及漏电流增大,容量保持能力由98.37%下降到84.15%;常温(25℃)搁置28 d,绝对值电压也增大;对分容后的电池进行拆解,发现负极上黑点呈上升趋势,可归因于正极侧铁粉在充电过程中被氧化,游离在电解液中,穿过隔膜到达负极表面,放电时被还原并沉积在负极表面,造成失效. 相似文献
3.
4.
5.
6.
采用粒度分析、流变分析、扫描电子显微镜法(SEM)等技术研究了PVP分散剂添加量对Li Fe PO4正极浆料粒度分布及流变性的影响规律。通过配方优化,制作高倍率放电18650型Li Fe PO4锂离子电池,并对其循环及倍率等性能进行了对比研究。结果表明,随着PVP加入量的提高,浆料的黏度呈现下降的趋势,浆料的粒度则先减小后增大,PVP加入量在0.4%~0.8%时,可达到最优的浆料分散效果。用PVP含量0.6%的Li Fe PO4正极浆料制作容量为1.1 Ah的18650电池表现出优异的高倍率放电及循环性能,在1.5 A充10 A放的条件下,900次循环后容量保持率高达90%以上,优于未使用PVP分散剂的传统磷酸铁锂电池;30 A高倍率放电容量可达到标称容量的94.6%。 相似文献
7.
8.
锂离子电池高倍率放电性能研究 总被引:5,自引:1,他引:5
对锂离子电池高倍率放电性能进行了研究。发现电池设计对锂离子电池放电性能具有较大的影响,设计了一种新型的锂离子电池的电极。研究了电极活性物质与导电剂、粘结剂的配比,电极片的面密度、压实密度对锂离子电池高倍率放电性能的影响,通过实验研究得到了一种高倍率放电性能良好的锂离子电池,该电池放电容量高,放电平台平滑,平台电压较高,循环性能较好,且电池放电时表面温度不高。分析锂离子电池高倍率放电循环曲线时发现了放电容量变化的一个规律,给出了针对锂离子电池高倍率放电的一种充、放电制度。 相似文献
9.
10.
11.
12.
13.
14.
15.
50Ah LiFePO_4聚合物锂离子单体电池的制备 总被引:1,自引:2,他引:1
以LiFePO4、中间相碳微球(MCMB)为正、负极活性物质,制作了50 Ah LiFePO4聚合物锂离子单体电池.过充、针刺的结果表明,单体电池的安全性能较高.不同倍率放电、1.00 C循环及不同温度下的放电等结果表明,单体电池的电性能和循环性能较好,能量密度和比能量分别为236.2 Wh/L和134 Wh/kg. 相似文献
16.
17.
18.
19.