首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of confinement on glass dynamics combined with the corresponding free volume changes of amorphous polystyrene (PS) in blends with semi‐crystalline high‐density polyethylene (HDPE) have been investigated using thermal analyses and positron annihilation lifetime spectroscopy (PALS). Two different glass transition temperatures (Tg) were observed in a PS/HDPE blend due to the dissimilarity in the chemical structure, consistent with an immiscible blend. However, Tg of PS in the incompatible PS/HDPE blend showed an upward trend with increasing PS content resulting from the confinement effect, while Tg of the semi‐crystalline HDPE component became lower than that of neat HDPE. Moreover, the elevation of Tg of PS was enhanced with a decrease of free volume radius by comparing annealed and unannealed PS/HDPE blends. Positron results showed that the free volume radius clearly decreased with annealing for all compositions, although the free volume hole size agreed well with linear additivity, indicating that there was only a weak interaction between the two components. Combining PALS with thermal analysis results, the confinement effect on the glass dynamics and free volume of PS phase in PS/HDPE blends could be attributed to the shrinkage of HDPE during crystallization when HDPE acted as the continuous phase. © 2015 Society of Chemical Industry  相似文献   

2.
The properties of olefin block copolymer (OBC)/thermoplastic polyurethane (TPU) blends with or without maleic anhydride (MA) modification were characterized and compared. Compared with the OBC/TPU blends, OBC‐g‐MA/TPU blends displayed finer morphology and reduced domain size in the dispersed phase. The crystallization temperatures of TPU decreased significantly from 155.9 °C (OBC/TPU) to 117.5 °C (OBC‐g‐MA/TPU) at low TPU composition in the blends, indicating the inhibition of crystallization through the sufficient interaction of modified OBC with TPU composition. The modified systems showed higher thermal stability than the unmodified systems over the investigated temperature range due to the enhanced interaction through inter‐bonding. The highest improvement in tensile strength was more than fivefold for OBC‐g‐MA/TPU (50/50) in comparison with its unmodified blend via the enhanced interfacial interaction between OBC‐g‐MA and TPU. This also led to the highest Young's modulus of 77.8 ± 3.9 MPa, about twofold increase, among the investigated blend systems. A corresponding improvement on the ductility was also observed for modified blends. The modification did not vary the glass transition temperature and crystalline structure much, thus the improvement in the mechanical properties was mainly attributed to the improved compatibility and interaction from the compatibilization effect as well as increased viscosity from the crosslinking effect for modified blends. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43703.  相似文献   

3.
The molecular dynamics and miscibility of highly interacting binary polymer blends of poly(methyl methacrylate) (PMMA) and poly[styrene‐co‐(maleic anhydride)] random copolymer with 8 wt% maleic anhydride content (SMA) were investigated as a function of composition over a wide range of frequency (10?2–106 Hz) at different constant temperatures (30–160 °C). Only one common glass relaxation process (α‐process) was detected for all measured blends, and its dynamics and broadness were found to be composition dependent. The existence of only one common α‐relaxation process located at a temperature range between those of the pure polymer components indicated the miscibility of the two polymer components over the entire range of composition. The miscibility was also confirmed by measuring the glass transition temperatures of the blends, Tg, using differential scanning calorimetry. The composition dependence of Tg of the blends showed a positive deviation from the linear mixing rule and well described by the Gordon–Taylor–Kwei equation. The relaxation spectrum of the blends was resolved into α‐ and β‐relaxation processes using the Havriliake–Negami (HN) equation and ionic conductivity. The dielectric relaxation parameters obtained from HN analysis, such as broadness of relaxation processes, maximum frequency, fmax, and dielectric strength, Δ? (for the α‐ and β‐relaxation processes), were found to be blend composition dependent. The kinetics of the α‐relaxation process of the blends were well described by the Meander model, while an Arrhenius‐type equation was used to evaluate the molecular dynamics of the β‐relaxation process. Blending of PMMA and SMA was found to have a considerable effect on the kinetics and broadness of the β‐relaxation process of PMMA, indicating that the strong interaction and miscibility between the two polymer components could effectively change the local environment of each component in the blend. © 2013 Society of Chemical Industry  相似文献   

4.
Blends of polycarbonate (PC) and poly(alkylene terephthalate) (PAT) such as poly(butylene terephthalate) (PBT) and poly(ethylene terephthalate) (PET) were investigated. It was learned that processes of phase separation in blends consisting of PC and PAT can cause variations in properties of both the amorphous and crystalline phases. In PC/PBT blends the DSC technique did not detect crystalline portion of PBT with its concentrations up to 20 wt %. For PBT = 40 wt %, it forms a continuous phase, and blend's crystallinity is close to the additive values. The glass transition temperature (Tg) shifts to the lower temperature region. The relaxation spectrometry revealed strong adhesion between phases in the blends over the temperature range from the completion of β‐transition to TgPAT. This interaction becomes weaker between TgPAT and TgPC. Temperature‐dependent variations in the molecular mobility and interphases interactions in the blends affect their impact strength. Over the temperature range where interphases interactions occur and the two components are in the glassy state, the blend is not impact resistant. Over the temperature range between TgPAT and TgPC the blends become impact‐resistant materials. This is because energy of crack propagation in the PAT amorphous phase—being in a high‐elastic state—dissipates. It is postulated that the effect of improving the impact strength of PC/PAT blends, which was found for temperatures between the glass transition temperatures of the mixed components, is also valid for other binary blends. © 2002 Wiley Perioodicals, Inc. J Appl Polym Sci 84: 1277–1285, 2002; DOI 10.1002/app.10472  相似文献   

5.
Binary blends of the sulfonated poly(ether ether ketone) (SPEEK)–poly(ether imide) (PEI) and SPEEK–polycarbonate (PC), and ternary blends of the SPEEK–PEI–PC, were investigated by differential scanning calorimetry. SPEEK was obtained by sulfonation of poly(ether ether ketone) using 95% sulfuric acid. From the thermal analysis of the SPEEK–PEI blends, single glass transition temperature (Tg) was observed at all the blend composition. For the SPEEK–PC blends, double Tgs were observed. From the results of thermal analysis, it is suggested that the SPEEK–PEI blends are miscible and the SPEEK–PC blends are immiscible. Polymer–polymer interaction parameter (χ12) of the SPEEK–PEI blends was calculated from the modified Lu and Weiss equation, and found to range from −0.011 to −0.825 with the blend composition. For the SPEEK–PC blends, the χ12 values were calculated from the modified Flory–Huggins equation, and found to range from 0.191 to 0.272 with the blend composition. For the SPEEK–PEI–PC ternary blends, phase separation regions that showed two Tgs were found to be consistent with the spinodal curves calculated from the χ12 values of the three binary blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2488–2494, 2000  相似文献   

6.
Polymer blends based on various ratios of polystyrene (PS) and polymethyl methacrylate (PMMA) were exposed to different doses of gamma radiation up to 25 Mrad. The structure–property behavior of the polymer blends before and after they had been irradiated was investigated by DSC, TGA, and FTIR spectroscopy. The DSC scans of the glass transition temperature (Tg) of the different polymer blends showed that the Tg was greatly decreased by increasing the ratio of the PMMA component in the polymer blends. Moreover, the Tg of PS/PMMA blends was found to decrease with increasing irradiation dose. The depression in Tg was noticeable in the case of blends rich in PMMA component. The TGA thermograms showed that the thermal stability of the unirradiated polymer blends decreases with increasing the ratios of PMMA component. Also, it was found that the presence of PS polymer in the blends affords protection against gamma radiation degradation and improves their thermal stability. However, exposing the polymer blends to high doses of gamma radiation caused oxidative degradation to PMMA components and decreased the thermal stability. The investigation of the kinetic parameters of the thermal decomposition reaction confirm the results of thermal stability. The FTIR analysis of the gamma‐irradiated polymer blend films gives further support to the TGA data. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 509–520, 1999  相似文献   

7.
In this study, two low‐molecular‐weight diurethanes were synthesized and blended with thermoplastic polyurethane (TPU). The effects of the incorporation on the thermal and rheological properties of TPU were evaluated. The diurethanes were obtained from the reaction of 4,4′‐diphenylmethane‐diisocyanate (MDI) with 1‐butanol (Additive 1) or 1‐octanol (Additive 2). Blending of the additives with TPU was carried out in a torque rheometer, and the blends obtained were analyzed by differential scanning calorimetry (DSC), torque rheometry, and capillary rheometry. The torque rheometry showed that an increase in the amount of both additives displaced the charging peaks to longer times and reduced the torque values after melting. The DSC analysis showed that the incorporation of the additives did not affect the glass transition temperature (Tg) of the flexible phase of TPU. However, an increase in the amount of Additive 1 led to a reduction in the Tg of the rigid phase, while increasing the amount of Additive 2 caused an increase in the Tg of this phase. Capillary rheometry results showed that blends with up to 2 wt % of additive led to intrinsic viscosity and melt‐flow stability values higher than those of processed TPU. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Poly(benzimidazole) (PBI) was solution-blended with a low molecular weight ether-imide analog to Ultem 1000. The as-cast blends were found to form one-phase structures over the whole of the composition range. By the use of optical microscopy and differential scanning calorimetry, the blends were found to phase separate on heating above the blend glass transition temperature (Tg) but did not remix on cooling. It was concluded that the blends formed on room temperature casting were nonequilibrium and remained one-phase simply because they were well below Tg.  相似文献   

9.
Blends of poly[3,3-bis(chloromethyl)oxetane] (Penton) with poly(vinyl acetate) were prepared. Compatibility, morphology, thermal behavior, and mechanical properties of blends with various compositions were studied using differential scanning calorimetry (DSC), dynamic mechanical measurements (DMA), tensile tests, and scanning electron microscopy (SEM). DMA study showed that the blends have two glass transition temperatures (Tg). The Tg of the PVAc rich phase shifts significantly to lower temperatures with increasing Penton content, suggesting that a considerable amount of Penton dissolves in the PVAc rich phase, but that the Penton rich phase contains little PVAc. The Penton/PVAc blends are partially compatible. DSC results suggest that PVAc can act as a β-nucleator for Penton in the blend. Marked negative deviations from simple additivity were observed for the tensile strength at break over the entire composition range. The Young's modulus curve appeared to be S-shaped, implying that the blends are heterogeneous and have a two-phase structure. This was confirmed by SEM observations. © 1992 John Wiley & Sons, Inc.  相似文献   

10.
Unmodified blends of two thermoplastic polyurethanes (TPU) and six polyolefines were used to study the influence of the component viscosities on the blend morphology and mechanical properties. Blends were produced by melt mixing using a twin screw extruder. Interactions between the blend components could not be detected by DSC, DMA, selective extraction, and SEM micrographs of cryofractures. The variation in tensile strength with blend composition produce a U-shaped curve with the minimum between 40 and 60 wt % of polyolefine. At similar viscosity ratios (ηd/ηm), blends with polyether based TPU (TPU-eth) have a finer morphology than blends with polyester based TPU (TPU-est). This is due to the lower surface free energy of the polyether soft segments compared to the polyester soft segments. Different morphologies also lead to changes in mechanical behavior. Blends with TPU-eth show a lower decrease in tensile strength with blend composition than blends with TPU-est. The viscosity ratio between TPU and polyolefines can be directly correlated to the blend morphology obtained under similar blending conditions. TPU/PE blends show a lower dispersity than TPU/PP blends, due to the higher viscosity ratios of TPU/PE blends. This results in a greater reduction in tensile strength with the disperse phase content. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 749–762, 1997  相似文献   

11.
An investigation of the effect of physical aging on excess enthalpy of compatible polymer blends was carried out. Poly(methyl methacrylate) (PMMA) and poly(styrene-co-acrylonitrile) (SAN) were chosen for this study. Blends of different ratios of PMMA and SAN were physically aged at different times and temperatures below their glass transition (Tg) and then subjected to enthalpy relaxation measurement in a differential scanning calorimeter (DSC). An improved procedure was developed and, employed to analyze the data. The error associated with the calculation of the normalized deviation in enthalpy, known as the “Φ” function, was below 4%. The relaxation was observed to proceed faster at higher aging temperature. It was also found that at higher aging temperatures of Tg – 20 and Tg– 35°C, enthalpy relaxation in SAN-rich blends proceeds faster than in PMMA rich blends, while at the low aging temperature of Tg– 50°C the rate of relaxation becomes independent of the composition.  相似文献   

12.
In this work, the morphology and linear viscoelastic behavior of PMMA/PP blends to which a graft copolymer PP‐g‐PMMA has been added was studied. The copolymer concentration varied from 1 to 10 wt % relative to the dispersed phase concentration. The rheological data were used to infer the interfacial tension between the blended components. It was observed that PP‐g‐PMMA was effective as a compatibilizer for PMMA/PP blends. For PP‐g‐PMMA concentration added below the critical concentration of interface saturation, two rheological behaviors were observed depending on the blend concentration: for 70/30 blend, the storage modulus, at low frequencies, increased as compared to the one of the unmodified blend; for 90/10 blend, it decreased. For 90/10 blend, the relaxation spectrum presented an interfacial relaxation time related to the presence of the compatibilizer (τβ). For PP‐g‐PMMA concentrations added above the critical concentration of interface saturation, the storage modulus of all blends increased as compared with the one of the unmodified blend. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
In this study, the structural and morphological properties of poly(methyl methacrylate)/poly(acrylonitrile‐g‐(ethylene‐co‐propylene‐co‐diene‐g‐styrene) (PMMA‐AES) blends were investigated with emphasis on the influence of the in situ polymerization conditions of methyl methacrylate. PMMA‐AES blends were obtained by in situ polymerization, varying the solvent (chloroform or toluene) and polymerization conditions: method A—no stirring and air atmosphere; method B—stirring and N2 atmosphere. The blends were characterized by infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and dynamic mechanical analysis (DMA). The results showed that the PMMA‐AES blends are immiscible and present complex morphologies. This morphology shows an elastomeric dispersed phase in a glassy matrix, with inclusion of the matrix in the elastomer domains, suggesting core shell or salami morphology. The occlusion of the glassy phase within the elastomeric domains can be due to the formation of graft copolymer and/or phase inversion during polymerization. However, this morphology is affected by the polymerization conditions (stirring and air or N2 atmosphere) and by the solvent used. The selective extraction of the blends' components and infrared spectroscopy showed that crosslinked and/or grafting reactions occur on the elastomer chains during MMA polymerization. The glass transition of the elastomer phase is influenced by morphology, crosslinking, and grafting degree and, therefore, Tg depends on the polymerization conditions. On the other hand, the behavior of Tg of the glassy phase with blend composition suggests miscibility or partial miscibility for the SAN phase of AES and PMMA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Fluorescence spectroscopy is used to measure component glass transition temperatures (Tgs) in miscible blends of pyrene-labeled poly(methyl methacrylate) (MPy-labeled PMMA) with poly(ethylene oxide) (PEO) or poly(vinyl chloride) (PVC) over a broad composition range. Component Tgs determined for PMMA blended with PEO can be described by the same value of self-concentration (0.60) determined previously (Lodge et al. J Polym Sci Part B: Polym Phys 2006; 44:756–763) using differential scanning calorimetry (DSC), indicating that fluorescence and DSC report a similar strength of component Tg perturbations. Blends of PMMA with PVC are also characterized via MPy-labeled PMMA fluorescence, demonstrating for the first time that both binary blend component Tgs can be determined from the temperature dependence of the fluorescence of a pyrenyl dye attached to a single blend component. This special sensitivity of the pyrenyl dye label to both component Tgs is hypothesized to derive from the solvatochromic nature of the dye, which in turn implies that the dye fluorescence may be sensitive to local stiffness or modulus in the blend. Because of the close proximity of the Tgs of neat PMMA and neat PVC, DSC is unable to clearly resolve the two component Tgs in these blends. Thus, fluorescence provides information unattainable by DSC and is a powerful new tool for investigating component Tgs in miscible blends.  相似文献   

15.
The crystallization kinetics of pure poly(ε‐caprolactone) (PCL) and its blends with bisphenol‐A tetramethyl polycarbonate (TMPC) was investigated isothermally as a function of composition and crystallization temperature (Tc) using differential scanning calorimetric (DSC) and polarized optical microscope techniques. Only a single glass‐transition temperature, Tg, was determined for each mixture indicating that this binary blend is miscible over the entire range of composition. The composition dependence of the Tg for this blend was well described by Gordon–Taylor equation with k = 1.8 (higher than unity) indicating strong intermolecular interaction between the two polymer components. The presence of a high Tg amorphous component (TMPC) had a strong influence on the crystallization kinetics of PCL in the blends. A substantial decrease in the crystallization kinetics was observed as the concentration of TMPC rose in the blends. The crystallization half‐time t0.5 increased monotonically with the crystallization temperature for all composition. At any crystallization temperature (Tc) the t0.5 of the blends are longer than the corresponding value for pure PCL. This behavior was attributed to the favorable thermodynamics interaction between PCL and TMPC which in turn led to a depression in the equilibrium melting point along with a simultaneous retardation in the crystallization of PC. The isothermal crystallization kinetics was analyzed on the basis of the Avrami equation. Linear behavior was held true for the augmentation of the radii of spherulites with time for all mixtures, regardless of the blend composition. However, the spherulites growth rate decreased exponentially with increasing the concentration of TMPC in the blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3307–3315, 2007  相似文献   

16.
EVA was blended with phenoxy over the whole range of composition using a twin‐screw Brabender. Two‐phase separation caused by EVA crystallization was observed in the EVA‐rich blends and the dispersed domain of EVA was not clearly shown in the phenoxy‐rich blends. Differential scanning calorimetry (DSC) showed that the glass transition temperature (Tg) of EVA was increased by 5–10°C in the EVA‐rich blends but the Tg of phenoxy was superposed over the melting behavior of EVA. X‐ray diffraction measurement indicated that EVA crystallization was restricted in the phenoxy‐rich blends and the EVA crystal structure was influenced by incorporation of phenoxy into the EVA‐rich blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 227–236, 1999  相似文献   

17.
Epoxidized natural rubbers (ENRs) with epoxide levels of 10, 20, 30, 40, and 50 mol % were prepared. The ENRs were later blended with poly(methyl methacrylate) (PMMA) with various blend formulations. The mixing torque of the blends was observed. The torque increased as the PMMA contents and epoxide molar percentage increased in the ENR molecules. Furthermore, the shear stress and shear viscosity of the polymer blends in the molten state increased as the ENR content and epoxide molar percentage increased in the ENR molecules. Chemical interactions between polar groups in the ENR and PMMA molecules might be the reason for the increases in the torque, shear stress, and viscosity. All the ENR/PMMA blends exhibited shear‐thinning behavior. This was observed as a decrease in the shear viscosity with an increase in the shear rate. The power‐law index of the blends decreased as the ENR contents and epoxide molar percentage increased in the ENR molecules. However, the consistency index (or zero shear viscosity) increased as the ENR contents and epoxide molar percentage increased. A two‐phase morphology was observed with scanning electron microscopy. The small domains of the minor components were dispersed in the major phase. For the determination of blend compatibility, two distinct glass‐transition‐temperature (Tg) peaks from the tan δ/temperature curves were found. Shifts in Tg to a higher temperature for the elastomeric phase and to a lower temperature for the PMMA phase were observed. Therefore, the ENR/PMMA blends could be described as partly miscible blends. According to the thermogravimetry results, the decomposition temperatures of the blends increased as the levels of ENR and the epoxide molar percentage increased. The chemical interactions between the different phases of the blends could be the reason for the increase. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3561–3572, 2004  相似文献   

18.
Isotactic, atactic, and syndiotactic poly(methyl methacrylates) (PMMAs) (designated as iPMMA, aPMMA, and sPMMA) with approximately the same molecular weight were mixed separately with poly(styrene‐co‐acrylonitrile) (abbreviated as PSAN) containing 25 wt % of acrylonitrile in tetrahydrofuran to make three polymer blend systems. Differential scanning calorimetry (DSC) was used to study the miscibility of these blends. The results showed that the tacticity of PMMA has a definite impact on its miscibility with PSAN. The aPMMA/PSAN and sPMMA/PSAN blends were found to be miscible because all the prepared films were transparent and showed composition dependent glass transition temperatures (Tgs). The glass transition temperatures of the two miscible blends were fitted well by the Fox equation, and no broadening of the glass transition regions was observed. The iPMMA/PSAN blends were found to be immiscible, because most of the cast films were translucent and had two glass transition temperatures. Through the use of a simple binary interaction model, the following comments can be drawn. The isotactic MMA segments seemed to interact differently with styrene and with acrylonitrile segments from atactic or syndiotactic MMA segments. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2894–2899, 1999  相似文献   

19.
The thermal behavior and properties of immiscible blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) with and without PS‐b‐PMMA diblock copolymer at different melt blending times were investigated by use of a differential scanning calorimeter. The weight fraction of PS in the blends ranged from 0.1 to 0.9. From the measured glass transition temperature (Tg) and specific heat increment (ΔCp) at the Tg, the PMMA appeared to dissolve more in the PS phase than did the PS in the PMMA phase. The addition of a PS‐b‐PMMA diblock copolymer in the PS/PMMA blends slightly promoted the solubility of the PMMA in the PS and increased the interfacial adhesion between PS and PMMA phases during processing. The thermogravimetric analysis (TGA) showed that the presence of the PS‐b‐PMMA diblock copolymer in the PS/PMMA blends afforded protection against thermal degradation and improved their thermal stability. Also, it was found that the PS was more stable against thermal degradation than that of the PMMA over the entire heating range. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 609–620, 2004  相似文献   

20.
A series of low molecular weight (≈40000) copolymers of methylmethacrylate (MMA) and 4-(methacryloyloxy)butylpentamethyldisiloxane (MBPD) have been synthesized by free radical polymerization in dimethylformamide solution. The microstructure, as derived from 13C NMR spectra, indicates that the copolymers are about 80% syndiotactic with an overall random distribution of mers. At room temperature, copolymers rich in MMA are clear, rigid glasses but become liquid at high MBPD content. Blends of these copolymers with PMMA are all heterogeneous with visible phase separation over most of the composition range. Differential scanning calorimetry studies show the presence of two Tg's when the relative concentration of PMMA to copolymer is high. Blends of two co-polymers of similar siloxane content produce clear films with no indication of phase separation. The permeability to oxygen at 25°C increases from 0.20 for pure PMMA to 3.0 (fmol/m·s·Pa.) for a copolymer of MMA/MBPD of the mole ratio of 3:1. Evaluation of the permeation behaviors of the blends suggests that blends rich in siloxane exist as a layered structure with the PMMA rich component dominating the observed permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号