首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four series of noble networks were synthesized with acrylic acid (AAc) copolymerized with varying amount of 2‐hydroxy propyl methacrylate or dodecyl methacrylate (AAc/HPMA or AAc/DMA; 5:1 to 5:5, w/w) in the presence of ethylene glycol dimethacrylate (EGDMA; 1, 5, 10, 15, and 20%, w/w) as a crosslinker and ammonium per sulfate (APS) as an initiator. Each of the networks was used to immobilize a purified lipase from Pseudomonas aeruginosa MTCC‐4713. The lipase was purified by successive salting out with (NH4)2SO4, dialysis, and DEAE anion exchange chromatography. Two of the matrices, E15a, i.e. [poly (AAc5co‐DMA1cl‐EGDMA15)] and I15c, i.e. [poly (AAc5co‐HPMA3cl‐EGDMA15)], that showed relatively higher binding efficiency for lipase were selected for further studies. I15c‐hydrogel retained 58.3% of its initial activity after 10th cycle of repetitive hydrolysis of p‐NPP, and I15c was thus catalytically more stable and efficient than the other matrix. The I15c‐hydrogel‐immobilized enzyme showed maximum activity at 65°C and pH 9.5. The hydrolytic activity of free and I15c‐hydrogel‐immobilized enzyme increased profoundly in the presence of 5 mM chloride salts of Hg2+, NH4+, Al3+, K+, and Fe3+. The immobilized lipase was preferentially active on medium chain length p‐nitrophenyl acyl ester (C:8, p‐nitrophenyl caprylate). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4636–4644, 2006  相似文献   

2.
Lipase from Candida rugosa was immobilized on poly(N‐vinyl‐2‐pyrrolidone‐co‐styrene) hydrogel (poly‐(VP‐co‐ST)) with ethylene dimethacrylate and α,α'‐azoisobutyronitrile, which act as crosslinker and initiator, respectively. Three different compositions of monomers were used, namely VP(%):ST(%), 10:90, 50:50, and 70:30 (wt(%)/wt(%)). The immobilized lipases were used in the enantioselective esterification of (R,S)‐2‐(4‐chlorophenoxy)‐propanoic acid with n‐tetradecanol. The optimum reaction condition of the enantioselective esterification for the native lipase and the poly(VP‐co‐ST) hydrogel immobilized lipases was determined with respect to temperature, solvents, and initial water activity (aw). The optimum temperature obtained was 40°C, with the poly(VP‐co‐ST) hydrogel immobilized lipase VP(%)/ST(%):10:90 showing the highest enantiomeric excess. In the solvent effect studies, the best solvents for high enantioselectivity were chloroform and carbon tetrachloride. In the aw studies, optimum αw for NL, VP(%):ST(%), 10:90, and 50:50 was 0.328, while for VP(%):ST(%), 70:30, it was 0.55. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3381–3386, 2004  相似文献   

3.
Microbial lipases (E.C. 3.1.1.3) are the preferred biocatalysts for the synthesis of various fragrance compounds, such as linalool acetate, citronellal acetate, and geranyl acetate, in organic solvents over chemical synthesis. In this study, a purified alkaline extracellular lipase of Pseudomonas aeruginosa MTCC‐4713 was efficiently immobilized onto a synthetic poly(AAc‐co‐HPMA‐cl‐EGDMA) hydrogel by surface adsorption, and the bound lipase was evaluated for its hydrolytic potential toward various p‐nitrophenyl acyl esters, which differed in their C‐chain length. Among four series of hydrogels prepared by the variation of the concentrations of monomer and crosslinker, two hydrogels, namely, I5d and I20d, that exhibited relatively higher protein (lipase activity) bindings were selected to perform hydrolytic and synthetic (geranyl butyrate) reactions in aqueous and organic solvents. The hydrogel‐bound lipase was highly hydrolytic toward p‐nitrophenyl ester (C: 16; p‐nitrophenyl palmitate). The hydrogel‐immobilized lipase was quite stable and retained approximately 57.6% of its original hydrolytic activity after the fifth cycle of reuse under optimized conditions (pH 8.5, 65°C). The hydrogel‐immobilized lipase when used to perform the esterification of geraniol/butyric acid (400 : 100 mM) in n‐heptane resulted in 98.8 mM geranyl butyrate at 65°C under shaking (120 rpm) after 15 h of reaction time. The addition of a molecular sieve (3 Å × 1.5 mm) to the reaction system at a concentration of 100 mg per reaction volume (1 mL) resulted in the complete conversion of the reactants into geranyl butyrate. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
A purified alkaline thermo‐tolerant lipase from Pseudomonas aeruginosa MTCC‐4713 was immobilized on a series of five noble weakly hydrophilic poly(AAc‐co‐HPMA‐cl MBAm) hydrogels. The hydrogel synthesized by copolymerizing acrylic acid and 2‐hydroxy propyl methacrylate in a ratio of 5 : 1 (HG5:1 matrix) showed maximum binding efficiency for lipase (95.3%, specific activity 1.96 IU mg?1 of protein). The HG5:1 immobilized lipase was evaluated for its hydrolytic potential towards p‐NPP by studying the effect of various physical parameters and salt‐ions. The immobilized lipase was highly stable and retained ~92% of its original hydrolytic activity after fifth cycle of reuse for hydrolysis of p‐nitrophenyl palmitate at pH 7.5 and temperature 55°C. However, when the effect of pH and temperature was studied on free and bound lipase, the HG5:1 immobilized lipase exhibited a shift in optima for pH and temperature from pH 7.5 and 55°C to 8.5 and 65°C in free and immobilized lipase, respectively. At 1 mM concentration, Fe3+, Hg2+, NH4+, and Al3+ ions promoted and Co2+ ions inhibited the hydrolytic activities of free as well as immobilized lipase. However, exposure of either free or immobilized lipase to any of these ions at 5 mM concentration strongly increased the hydrolysis of p‐NPP (by ~3–4 times) in comparison to the biocatalysts not exposed to any of the salt ions. The study concluded that HG5:1 matrix efficiently immobilized lipase of P. aeruginosa MTCC‐4713, improved the stability of the immobilized biocatalyst towards a higher pH and temperature than the free enzyme and interacted with Fe3+, Hg2+, NH4+, and Al3+ ions to promote rapid hydrolysis of the substrate (p‐NPP). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4252–4259, 2006  相似文献   

5.
Lipase from Candida rugosa was immobilized by entrapment while polymerizing a poly(N‐vinyl‐2‐pyrrolidone‐co‐styrene) [poly(VP‐co‐ST)] hydrogel using ethylene dimethacrylate (EDMA) as the crosslinking agent. The immobilized enzymes were used in the esterification reaction of oleic acid and butanol in hexane. The activities of the immobilized enzymes and the leaching ability of the enzyme from the support with respect to the different compositions of the hydrogels were investigated. The thermal, solvent, and storage stability of the immobilized lipases were also determined. The activities were relatively higher when the percent compositions of VP(%):ST(%) were 50:50 and 30:70. The lipase immobilized on VP(%):ST(%) 50:50 showed the highest thermal stability, while lipase immobilized on VP(%):ST(%) 30:70 exhibited the highest solvent stability. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1404–1409, 2001  相似文献   

6.
A range of fatty acid esters is now being produced commercially with immobilized microbial lipases (glycerol ester hydrolases; EC) in nonaqueous solvents. In this study, a synthetic hydrogel was prepared by the copolymerization of methacrylic acid and dodecyl methacrylate in the presence of a crosslinker, N,N‐methylene bisacrylamide. A purified alkaline thermotolerant bacterial lipase from Bacillus cereus MTCC 8372 was immobilized on a poly(methacrylic acid‐co‐dodecyl methacrylate‐clN,N‐methylene bisacrylamide) hydrogel by an adsorption method. The hydrogel showed a 95% binding efficiency for the lipase. The bound lipase was evaluated for its hydrolytic potential toward various p‐nitrophenyl acyl esters with various C chain lengths. The bound lipase showed optimal hydrolytic activity toward p‐nitrophenyl palmitate at a pH of 8.5 and a temperature of 55°C. The hydrolytic activity of the hydrogel‐bound lipase was enhanced by Hg2+, Fe3+, and NH ions at a concentration of 1 mM. The hydrogel‐bound lipase was used to synthesize geranyl acetate from geraniol and acetic acid in n‐heptane. The optimization of the reaction conditions, such as catalyst loading, effect of substrate concentration, solvent (n‐pentane, n‐hexane, n‐heptane, n‐octane, and n‐nonane), reaction time, temperature, molecular sieve (3 Å × 1.5 mm) and scale up (at 50‐mL level), was studied. The immobilized lipase (25 mg/mL) was used to perform an esterification in n‐alkane(s) that resulted in the synthesis of approximately 82.8 mM geranyl acetate at 55°C in n‐heptane under continuous shaking (160 rpm) after 15 h when geraniol and acetic acid were used in a ratio of 100 : 100 mM. The addition of a molecular sieve (3 Å × 1.5 mm) to the reaction system at a concentration of 40 mg/mL in reaction volume (2 mL) resulted in an increase in the conversion of reactants into geranyl acetate (90.0 mM). During the repetitive esterification under optimum conditions, the hydrogel‐bound lipase produced ester (37.0 mM) after the eighth cycle of reuse. When the reaction volume was scaled up to 50 mL, the ester synthesized was 58.7 mM under optimized conditions. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Microbial lipases (E.C. 3.1.1.3) are preferred biocatalysts for the synthesis of esters in organic solvents. Various extracellular thermoalkaliphilic lipases have been reported from Pseudomonas sp. In the present study, a purified alkaline thermoalkalophilic extracellular lipase of Pseudomonas aeruginosa MTCC‐4713 was efficiently immobilized onto a synthetic poly(AAc‐co‐HPMA‐cl‐EGDMA) hydrogel by adsorption and the bound lipase was evaluated for its hydrolytic potential towards various p‐nitrophenyl acyl esters varying in their C‐chain lengths. The bound lipase showed optimal hydrolytic activity towards p‐nitrophenyl palmitate (p‐NPP) at pH 8.5 and temperature 45°C. The hydrolytic activity of the hydrogel‐bound lipase was markedly enhanced by the presence of Hg2+, Fe3+, and NH salt ions in that order. The hydrogel‐immobilized lipase (25 mg) was used to perform esterification in various n‐alkane(s) that resulted in ~ 84.9 mM of methyl acrylate at 45°C in n‐heptane under shaking (120 rpm) after 6 h, when methanol and acrylic acid were used in a ratio of 100 mM:100 mM, respectively. Addition of a molecular sieve (3Å × 1.5 mm) to the reaction system at a concentration of 100 mg/reaction vol (1 mL) resulted in a moderate enhancement in conversion of reactants into methyl acrylate (85.6 mM). During the repetitive esterification under optimum conditions, the hydrogel‐bound lipase produced 71.3 mM of ester after 10th cycle of reuse. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 183–191, 2007  相似文献   

8.
An alkaline thermotolerant bacterial lipase of Bacillus coagulans MTCC‐6375 was purified and immobilized on a methacrylic acid and dodecyl methacrylate (MAc‐DMA) hydrogel. The lipase was optimally bound to the matrix after 20 min of incubation at 55°C and pH 9 under shaking conditions. The matrix‐bound lipase retained approximately 50% of its initial activity at 70–80°C after 3 h of incubation. The immobilized lipase was highly active on medium chain length p‐nitrophenyl acyl ester (C: 8, p‐nitrophenyl caprylate) than other p‐nitrophenyl acyl esters. The presence of Fe3+, NH4+, K+, and Zn2+ ions at 1 mM concentration in the reaction mixture resulted in a profound increase in the activity of immobilized lipase. Most of the detergents partially reduced the activity of the immobilized lipase. The immobilized lipase performed ~62% conversion in 12 h at temperature 55°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1420–1426, 2006  相似文献   

9.
Lipases (E.C. 3.1.1.3) have been extensively used to achieve various esterification reactions in water-restricted or water-free media. In the present study a purified thermotolerant alkalophilic extracellular lipase of Bacillus coagulans MTCC-6375 has been efficiently immobilized onto a synthetic poly (MAc-co-DMA-cl-MBAm) hydrogel by surface absorption, and the bound lipase was used to perform short-chain fatty acid ester synthesis in n-alkane(s). The hydrogel bound lipase resulted in approximately 67 mM of isoamyl acetate at 55°C in n-heptane under shaking in 15 h when vinyl acetate:isoamyl alcohol was used in a ratio of 100 mM:100 mM. Addition of a molecular sieve (3 Å × 1.5 mm) to the reaction system at a concentration of 25–500 mg per reaction volume had deleterious effect on the conversion of reactants to isoamyl acetate (64 mM). During the repetitive esterification under optimal conditions, the hydrogel bound lipase produced 31.3 mM of ester after fourth cycle of reuse. Use of methanol and 2-propanol (instead of isoamyl alcohol) resulted in 78.2 and 64.9 mM of methyl acetate and 2-propyl acetate, respectively, under the optimized conditions in n-heptane © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
以磁性壳聚糖纳米复合材料共价固定的褶皱假丝酵母脂肪酶为催化剂,以木质甾醇和油酸为原料,对木质甾醇油酸酯的酶法合成工艺条件进行了优化。得到的最佳工艺条件为:催化剂用量12.7%(以底物总质量计),油酸与木质甾醇物质的量比为2∶1,木质甾醇质量浓度为122.9 g/L,反应温度50℃,反应时间24 h。在该条件下,木质甾醇转化率为96.42%。对月桂酸、肉豆蔻酸、棕榈酸不同碳链长度的脂肪酸或混合脂肪酸进行酯化反应,木质甾醇的转化率可达96.67%~98.74%,催化剂使用5次时,转化率仍可达82.45%。  相似文献   

11.
Thermoresponsive hydrogels based on N‐isopropylacrylamide and N‐vinylimidazole were synthesized, and their swelling–deswelling behavior was studied as a function of the total monomer concentration. For copolymeric structures with better thermoresponsive properties with respect to poly(N‐isopropylacrylamide‐coN‐vinylimidazole) hydrogels, these hydrogels were protonated with HCl and HNO3, and the copolymer behaviors were compared with those of the unprotonated hydrogels. The temperature was changed from 4 to 70°C at fixed pHs and total ionic strengths. The equilibrium swelling ratio, dynamic swelling ratio, and dynamic deswelling ratio were evaluated for all the hydrogels. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1619–1624, 2004  相似文献   

12.
Extracellular lipase from Bacillus coagulans BTS‐3 was immobilized on activated (alkylated, 2.5% glutaraldehyde) and native (nonactivated) polyethylene powder, and its thermostability and esterification efficiency were studied. Immobilization on activated support was found to enhance thermostability as well as esterification efficiency. The optimum time for immobilization on activated (AS) and nonactivated (NS) polyethylene support was found to be 10 min, and the binding of the lipase was markedly higher on AS. Lipase was more efficiently bound to AS (64%) than to NS (30%) at an optimum temperature of 37°C. The pH and temperature optima for AS‐ and NS‐bound lipase were 9.0 and 55°C and 8.5 and 55°C respectively. At 55°C the free lipase, which had a half‐life of 2 h, lost most of its activity at elevated temperatures. In contrast, AS‐bound lipase retained 60%–80% of its original activity at 55°C, 60°C, 65°C, and 70°C for 2 h. Exposure to organic solvents resulted in enhanced lipase activity in n‐hexane (45%) and ethanol (30%). Both AS‐ and NS‐bound biocatalysts were recyclable and retained more than 85% of their initial activity up to the fourth cycle of hydrolysis of p‐nitrophenyl palmitate. The AS‐bound lipase efficiently performed maximum esterification (98%) of ethanol and propionic acid (300 mM each, 1 : 1) in n‐hexane at 55°C. With free or NS‐bound lipase in similar conditions, the conversion of reactants into ester was relatively low (40%). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3986–3993, 2006  相似文献   

13.
The aim of the work reported here was to investigate temperature‐ and pH‐sensitive hydrogels of N‐isopropylacrylamide (NIPAM) and itaconic acid (IA) and their semi‐interpenetrating polymer networks (semi‐IPNs) with varying contents of poly(ethylene glycol) (PEG). The stimuli responsiveness, swelling behaviour and mechanical properties of the hydrogels and semi‐IPNs were studied in order to investigate the effect of various amounts of PEG. Pulsed‐gradient spin‐echo NMR experiments were carried out to investigate the diffusion process. The pH sensitivity increased with an increasing amount of PEG in the semi‐IPNs, while the overall rate of water uptake was diffusion‐controlled (n < 0.5). For certain PEG contents (5 and 10 wt%), the semi‐IPNs exhibited better mechanical properties than the poly(NIPAM‐co‐IA) copolymer. The calculated values of the self‐diffusion coefficients of water indicated facilitated diffusion of water through the system with increased amounts of PEG, while the self‐diffusion coefficients of a model compound, metoprolol tartrate, showed no significant dependence on the amount of PEG. According to the results obtained and compared to results reported in the literature, the investigated semi‐IPNs may have potential applications in the controlled release of macromolecular active agents such as proteins and peptides. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
Hydrogels are hydrophilic polymers that swell to an equilibrium volume in the presence of water, preserving their shape. The dynamic swelling behavior of poly(N‐isopropylacrylamide‐coN,N‐dimethylacrylamide) [poly(NIPA‐co‐DMA)] copolymers at 37°C was investigated. It was observed that the swelling degree in the copolymers decreases with the N‐isopropylacrylamide content. In addition, the liberation mechanism was found to be Fickian. Diffusion coefficients according to Fick′s law as a function of the N‐isopropylacrylamide concentration and results of the release process are reported. The kinetics of cephazoline sodium release from poly(NIPA‐co‐DMA) hydrogels with different compositions was studied. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3433–3437, 2004  相似文献   

15.
Polyvinyl alcohol (PVA)‐nanofibers‐immobilized lipase were formed by electrospinning. The specific surface area of the nanofiber (5.96 m2/g) was about 250 times larger than that of PVA‐film‐immobilized lipase (0.024 m2/g). The PVA‐nanofibers‐immobilized lipase were used as the catalyst for the esterification of (Z)‐3‐hexen‐1‐ol (leaf alcohol) with acetic acid in hexane. The activity of the nanofiber is equivalent to that of commercially available immobilized lipase (Novozym‐435). The ester conversions of the nanofibers, Novozym‐435, the film and lipase powder reached 99.5% at 5 h, 100% at 5 h, 11.5% at 6 h, and 81.1% at 5.75 h, respectively. The nanofibers‐immobilized lipase showed higher activity for the esterification than the film‐immobilized lipase and lipase powder, probably because it has high specific surface area and high dispersion state of lipase molecules in PVA matrix. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
A series of new hydrogel membranes with different compositions of acrylic acid (AAc) and N‐[3‐(dimethylamino)propyl]‐methacrylamide (DMAPMA) were prepared by aqueous copolymerization, without using chemical crosslinker or radiation. Chemical structure of the membranes (PADMAs) was characterized by Fourier transform infrared spectroscopy (FTIR). Swelling experiments were carried out in simulated body fluid (SBF) at 37 ± 1°C to investigate degree of swelling, dimensional stability, and pore size of the PADMA membranes. In SBF, the variation of pore size with membrane composition was monitored by optical microscopic technique. Morphology of the membranes was characterized, before and after exposure to SBF, by scanning electron microscopy (SEM). It was observed that the membranes are composed of closely packed nanogels of ~200 nm. Macroporous network structure of the SBF‐swollen PADMA was also observed to be composed of interconnected nanogels. Blood compatibility of the PADMA membranes was evaluated in vitro, by performing hemolysis assay and thrombogenicity assay. The extent of hemolysis due to PADMA membranes was found to be <2%, which ensured that all of the membranes were highly hemocompatible. Salicylic acid (SA) was chosen as a model drug. Diffusion coefficient of SA through PADMA membranes was investigated. It was observed that membrane composition regulates both pore size and drug diffusion. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Lipase (EC 3.1.1.3) was immobilized on cellulose acetate–TiO2 gel fibre by the sol–gel method. The immobilized lipases were used for esterification of n‐butyric acid with n‐butyl alcohol and enantioselective acylation of (R, S)‐phenylethanol using vinyl acetate as an acyl donor. Compared with native lipase, the activity of the immobilized lipase was stable and relatively unaffected by the water content of the solvent and the substrate concentration. The data indicate that the lipases are immobilized on the fibre surface and that enzyme activity is influenced by bound water. However, the thermal reactivity and enantioselectivity of the immobilized lipase were less than those of native lipase. This may not reflect thermal inactivation of the enzyme but rather significant thermal contraction of the gel fibre by cellulose crystallization, resulting in liberation of bound water and a decrease in the amount of enzyme which is available for the reaction. Copyright © 2001 Society of Chemical Industry  相似文献   

18.
Triptorelin lactate was successfully synthesized by porcine pancreatic lipase (PPL) in organic solvents. The effects of acyl donor, substrate ratio, organic solvent, temperature, and water activity were investigated. Under the optimum conditions, a yield of 30% for its ester could be achieved in the reaction for about 48 h.  相似文献   

19.
The mechanical properties and the swelling behavior of hydrogels based on N‐isopropylacrylamide (NIPA) and 4‐vinylbenzenesulfonic acid sodium salt (styrene sulfonate, SSA) monomers were investigated. The mole fraction of SSA in the comonomer feed varied between 0 and 1, whereas the crosslinker ratio was fixed at 1/85. Both the swelling and the elasticity data of the hydrogels swollen in water show that they are in the non‐Gaussian regime. The exponents found for the charge density dependence of the equilibrium swelling ratio as well as for the volume dependence of the gel elastic modulus are in good agreement with the predicted course of the non‐Gaussian elasticity of swollen hydrogels. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 135–141, 2004  相似文献   

20.
Hydrogels of N‐isopropylacrylamide and itaconic acid were synthesized with different monomer ratios and with two crosslinking agent concentrations. The different xerogels were immersed in water and the swelling process was conducted up to equilibrium conditions at two temperatures (22 and 37°C). These temperatures are lower and higher than the transition temperature shown by PNIPA hydrogels. The mechanical properties of the different solvated hydrogels were examined by oscillatory shear measurements at 22 and 37°C. The copolymer volume fraction and the elastic storage modulus of the hydrogels decreased as the itaconic acid percentage in the copolymer increased. This behavior was attributed to the higher hydrophilic character of the itaconic acid comonomer. Effective crosslinking density, molar mass between crosslinks, and the polymer–solvent interaction parameter were determined from the experimental values of the elastic storage moduli and the copolymer volume fractions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2540–2545, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号