首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Providing guaranteed quality of service (QoS) in wireless networks is a key issue for deploying multimedia applications. To support such a QoS, an arduous problem concerning how to find a feasible end to end path to satisfy multiple QoS constraints should be studied. In general, multi-constrained path selection, with or without optimization, is an NP-complete problem that cannot be exactly solved in polynomial time. Approximation algorithms and heuristics with polynomial and pseudo-polynomial time complexities are often used to deal with this problem. However, existing solutions suffer either from excessive computational complexities that cannot be used for multimedia applications in ad hoc networks characterized by mobility and performance constraints (e.g., limited energy, wireless medium, etc.). Recently a promising heuristic algorithm H_MCOP using a non linear Lagrange relaxation path functions has demonstrated an improvement in its success rate and in finding feasible paths. However, the H_MCOP is not suitable for ad hoc networks and has not exploited the full capability that a Lagrange relaxation could offer. In this paper, we propose an efficient multi-constrained path heuristic called E_MCP, which exploits efficiently the Lagrange relaxation and enhances the path search process to be adequate to mobile ad hoc networks. Using extensive simulations on random mobile network with correlated and uncorrelated link weights, we show that the same level of computational complexity, E_MCP can achieve a higher success ratio of finding feasible paths.  相似文献   

2.
This paper presents a novel framework for quality‐of‐service (QoS) multicast routing with resource allocation that represents QoS parameters, jitter delay, and reliability, as functions of adjustable network resources, bandwidth, and buffer, rather than static metrics. The particular functional form of QoS parameters depends on rate‐based service disciplines used in the routers. This allows intelligent tuning of QoS parameters as functions of allocated resources during the multicast tree search process, rather than decoupling the tree search from resource allocation. The proposed framework minimizes the network resource utilization while keeping jitter delay, reliability, and bandwidth bounded. This definition makes the proposed QoS multicast routing with resource allocation problem more general than the classical minimum Steiner tree problem. As an application of our general framework, we formulate the QoS multicast routing with resource allocation problem for a network consisting of generalized processor sharing nodes as a mixed‐integer quadratic program and find the optimal multicast tree with allocated resources to satisfy the QoS constraints. We then present a polynomial‐time greedy heuristic for the QoS multicast routing with resource allocation problem and compare its performance with the optimal solution of the mixed‐integer quadratic program. The simulation results reveal that the proposed heuristic finds near‐optimal QoS multicast trees along with important insights into the interdependency of QoS parameters and resources.  相似文献   

3.
Policy‐based management has been widely studied in recent years. The Internet Engineering Task Force (IETF) has recently introduced the policy‐based networking as a means of managing IP networks according to the new constraints defined in the network, such as the guarantee of the quality of service (QoS). Network management based on policies, is modelled as a state machine, which moves from one state to another according to the enforced policy. The IETF policy‐based networking is defined for application to network nodes. However, some recent work suggests extending the policy‐based networking to the end‐user terminals. In this paper, we present an analysis of such an extension and we propose some possible solutions to support new policy‐aware terminals. In addition, we present AAA, QoS and mobility management that user such a policy‐aware terminals. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Streaming video over IP networks has become increasingly popular; however, compared to traditional data traffic, video streaming places different demands on quality of service (QoS) in a network, particularly in terms of delay, delay variation, and data loss. In response to the QoS demands of video applications, network techniques have been proposed to provide QoS within a network. Unfortunately, while efficient from a network perspective, most existing solutions have not provided end‐to‐end QoS that is satisfactory to users. In this paper, packet scheduling and end‐to‐end QoS distribution schemes are proposed to address this issue. The design and implementation of the two schemes are based on the active networking paradigm. In active networks, routers can perform user‐driven computation when forwarding packets, rather than just simple storing and forwarding packets, as in traditional networks. Both schemes thus take advantage of the capability of active networks enabling routers to adapt to the content of transmitted data and the QoS requirements of video users. In other words, packet scheduling at routers considers the correlation between video characteristics, available local resources and the resulting visual quality. The proposed QoS distribution scheme performs inter‐node adaptation, dynamically adjusting local loss constraints in response to network conditions in order to satisfy the end‐to‐end loss requirements. An active network‐based simulation shows that using QoS distribution and packet scheduling together increases the probability of meeting end‐to‐end QoS requirements of networked video. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The ever‐increasing transmission requirements of quality of service (QoS)‐sensitive applications, especially real‐time multimedia applications, can hardly be met by the single path routing protocols. Multipath transmission mechanism is a feasible approach to provide QoS for various applications. On the basis of the general framework of multipath transport system based on application‐level relay, we present a relay path allocation scheme, whose goal is to select suitable relay paths, while balancing the overlay traffic among the different domains and relayers. With the application‐layer traffic optimization service under the standardization within the Internet Engineering Task Force (IETF), the controller has the topology‐aware ability to allocate relay paths with excellent routing performance. To further develop the universality of our method, the controller perceives transmission performance of relay overlay network through relayers' performance detection processes and, thus, has the application‐aware ability to allocate relay paths with excellent transmission performance for different applications by consulting application‐specific transmission metrics. Simulation results demonstrate that the proposed relay path allocation algorithm performs well in allocating superior relay paths and can balance the distribution of overlay traffic across domains in different network situations.  相似文献   

6.
In order to support the quality‐of‐service (QoS) requirements for real‐time traffic over broadband wireless networks, advanced techniques such as space‐time diversity (STD) and multicarrier direct‐sequence code division multiple access (MC‐DS‐CDMA) are implemented at the physical layer. However, the employment of such techniques evidently affects the QoS provisioning algorithms at the medium access control (MAC) layer. In this paper, we propose a space‐time infrastructure and develop a set of cross‐layer real‐time QoS‐provisioning algorithms for admission control, scheduling, and subchannel‐allocations. We analytically map the parameters characterizing the STD onto the admission‐control region guaranteeing the real‐time QoS. Our analytical analyses show that the proposed algorithms can effectively support real‐time QoS provisioning. Also presented are numerical solutions and simulation results showing that the STD can significantly improve the QoS provisioning for real‐time services over wireless networks. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Because of the inevitable trend of green networking, energy efficiency (EE) is quickly becoming one of the key performance metrics to evaluate wireless communication systems, together with spectrum efficiency (SE) and quality of service (QoS) that have been traditionally used. This paper studies the fundamental tradeoff between EE and SE in the presence of statistical QoS requirements in wireless transmission systems. Earlier studies have shown that the performance with QoS requirements in the wireless transmission can be measured through effective capacity, which can capture the physical layer fading channel characteristics in the link layer QoS requirements, such as delay and data rate. Under this context, SE is defined as effective capacity per unit frequency bandwidth, and EE is defined as energy consumed per effective capacity bit. Both circuit power and transmission power are considered in the energy model, based on which we derive the quasi‐convex generalized EE formulation. To exploit the tradeoff between EE and SE with QoS considerations, we propose a generic close‐form approximation for EE–SE formulation by employing a curve fitting approach. The impacts of QoS and circuit power consumption on EE–SE tradeoff are respectively analyzed. QoS requirement and circuit power consumption affect the EE–SE tradeoff differently. In the low‐SNR regime, circuit power shows more impact on the EE–SE tradeoff, whereas QoS impacts EE–SE tradeoff more in the high‐SNR regime. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The problem of finding link/node‐disjoint paths between a pair of nodes in a network has received much attention in the past. This problem is fairly well understood when the links in a network are only specified by a single link weight. However, in the context of quality of service routing, links are specified by multiple link weights and restricted by multiple constraints. Unfortunately, the problem of finding link/node disjoint paths in multiple dimensions faces different conceptual problems. This paper presents a first step to understanding these conceptual problems in link‐disjoint quality of service routing and proposes a heuristic link‐disjoint QoS algorithm that circumvents these problems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
To solve the problem that the QoS optimization schemes which based on heuristic algorithm degraded often due to the mismatch between parameters and network characteristics in software-defined networking scenarios,a software-defined networking QoS optimization algorithm based on deep reinforcement learning was proposed.Firstly,the network resources and state information were integrated into the network model,and then the flow perception capability was improved by the long short-term memory,and finally the dynamic flow scheduling strategy,which satisfied the specific QoS objectives,were generated in combination with deep reinforcement learning.The experimental results show that,compared with the existing algorithms,the proposed algorithm not only ensures the end-to-end delay and packet loss rate,but also improves the network load balancing by 22.7% and increases the throughput by 8.2%.  相似文献   

10.
A simulation‐based optimization is a decision‐making tool that helps in identifying an optimal solution or a design for a system. An optimal solution and design are more meaningful if they enhance a smart system with sensing, computing, and monitoring capabilities with improved efficiency. In situations where testing the physical prototype is difficult, a computer‐based simulation and its optimization processes are helpful in providing low‐cost, speedy and lesser time‐ and resource‐consuming solutions. In this work, a comparative analysis of the proposed heuristic simulation‐optimization method for improving quality‐of‐service (QoS) is performed with generalized integrated optimization (a simulation approach based on genetic algorithms with evolutionary simulated annealing strategies having simplex search). In the proposed approach, feature‐based local (group) and global (network) formation processes are integrated with Internet of Things (IoT) based solutions for finding the optimum performance. Further, the simulated annealing method is applied for finding local and global optimum values supporting minimum traffic conditions. A small‐scale network of 50 to 100 nodes shows that genetic simulation optimization with multicriteria and multidimensional features performs better as compared to other simulation‐optimization approaches. Further, a minimum of 3.4% and a maximum of 16.2% improvement is observed in faster route identification for small‐scale IoT networks with simulation‐optimization constraints integrated model as compared to the traditional method. The proposed approach improves the critical infrastructure monitoring performance as compared to the generalized simulation‐optimization process in complex transportation scenarios with heavy traffic conditions. The communicational and computational‐cost complexities are least for the proposed approach.  相似文献   

11.
At the extremes of the complexity‐performance plane, there are two exemplary QoS management architectures: Integrated Services (IntServ) and Differentiated Services (DiffServ). IntServ performs ideally but is not scalable. DiffServ is simple enough to be adopted in today's core networks, but without any performance guarantee. Many compromise solutions have been proposed. These schemes, called quasi‐stateful IntServ or stateful DiffServ, however, have not attracted much attention due to their inherently compromising natures. Two disruptive flow‐based architectures have been recently introduced: the flow‐aware network (FAN) and the flow‐state‐aware network (FSA). FAN's control is implicit without any signaling. FSA's control is even more sophisticated than that of IntServ. In this paper, we survey established QoS architectures, review disruptive architectures, discuss their rationales, and points out their disadvantages. A new QoS management architecture, flow‐aggregate‐based services (FAbS), is then proposed. The FAbS architecture has two novel building blocks: inter‐domain flow aggregation and endpoint implicit admission control.  相似文献   

12.
Multiconstrained quality-of-service (QoS) routing deals with finding routes that satisfy multiple independent QoS constraints. This problem is NP-hard. Two heuristics, the limited granularity heuristic and the limited path heuristic, are investigated. Both heuristics extend the Bellman-Ford shortest path algorithm and solve general k-constrained QoS routing problems. Analytical and simulation studies are conducted to compare the time/space requirements of the heuristics and the effectiveness of the heuristics in finding paths that satisfy the QoS constraints. The major results of this paper are the following. For an N-nodes and E-edges network with k (a small constant) independent QoS constraints, the limited granularity heuristic must maintain a table of size O(|N|k-1) in each node to be effective, which results in a time complexity of O(|N|k|E|), while the limited path heuristic can achieve very high performance by maintaining O(|N|2 lg(|N|)) entries in each node. These results indicate that the limited path heuristic is relatively insensitive to the number of constraints and is superior to the limited granularity heuristic in solving k-constrained QoS routing problems when k>3  相似文献   

13.
The seamless internetworking among heterogeneous networks is in great demand to provide ‘always‐on’ connectivity services with quality of service (QoS) provision, anywhere at anytime. The integration of wireless‐fidelity (Wi‐Fi) and wireless metropolitan area networks (WiMAX) networks can combine their best features to provide ubiquitous access, while mediating the weakness of both networks. While it is challenging to obtain optimized handover decision‐based dynamic QoS information, users can improve their perceived QoS by using the terminal‐controlled handover decision in a single device equipped with multiple radio interfaces. The IEEE 802.21 aims at providing a framework that defines media‐independent handover (MIH) mechanism that supports seamless handover across heterogeneous networks. In this paper, an multiple attributes decision making‐based terminal‐controlled vertical handover decision scheme using MIH services is proposed in the integrated Wi‐Fi and WiMAX networks to provide ‘always‐on’ connectivity QoS services. The simulation results show that the proposed scheme provides smaller handover times and lower dropping rate than the RSS‐based and cost function‐based vertical handover schemes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The Internet of vehicles (IoV) is an emerging networking technology, which can support information sharing and interactions among users, vehicles, and infrastructures. Various applications can be provided by IoVs, and they have very different quality‐of‐service (QoS) requirements. It is a great challenge to design an efficient MAC protocol to meet the different QoS demands of various applications in IoVs, because of unreliable links and high vehicle mobility. On the other hand, cooperative communication is effective in mitigating wireless channel impairments by utilizing the broadcast nature of wireless channels. In this paper, a multi‐channel cooperative clustering‐based MAC (MCC‐MAC) protocol, under the Dedicated Short Range Communication (DSRC) multi‐channel architecture, is presented to improve the transmission reliability of safety messages and provision QoS for different applications in IoVs. Further, we analyze the performance of MCC‐MAC, in terms of average transmission delay. In addition, extensive simulations with ns‐2 are conducted to demonstrate the performance of the proposed MCC‐MAC. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The software‐defined networking (SDN) paradigm proposes to decouple the control plane (decision‐making process) and the data plane (packet forwarding) to overcome the limitations of traditional network infrastructures, which are known to be difficult to manage, especially at scale. Although there are previous works focusing on the problem of quality of service (QoS) routing in SDN networks, only few solutions have taken into consideration the network consistency, which reflects the adequacy between the decisions made and the decisions that should be taken. Therefore, we propose a network architecture that guarantees the consistency of the decisions to be taken in an SDN network. A consistent QoS routing strategy is then introduced in a way that avoids any quality degradation of prioritized traffic while optimizing resources usage. Thus, we proposed a traffic dispersion heuristic in order to achieve this goal. We compared our approach with several existing framework in terms of best‐effort flows average throughput, average video bitrate, and video quality of experience (QoE). The emulation results, which are performed using the Mininet environment, clearly demonstrate the effectiveness of the proposed approach that outperforms existing frameworks.  相似文献   

16.
Supporting seamless handovers between different wireless networks is a challenging issue. One of the most important aspects of a seamless handover is finding a target network and point of attachment (PoA). This is achieved by performing a so‐called channel scanning. In most handovers, such as between universal mobile telecommunications system (UMTS), wireless local area network (WLAN), and worldwide interoperability for microwave access (WiMAX), channel scanning causes severe service disruptions with the current PoA and degrades the quality of service (QoS) during the handover. In this paper, a new architecture for QoS supported scanning that can be generalized to different wireless networks is proposed. It employs two techniques. The first is for determining a policy‐based order for the channel scanning sequence. With this technique, depending on the network costs and user requirements, the policy engine determines the channel scanning order for different network types and sets up a scanning sequence of PoAs for a given network type. This policy‐based scanning order provides a faster discovery of the target PoA that meets the QoS demands of the user. The second technique consists of a QoS supported dynamic scanning algorithm where the scanning frequency and duration are determined based on the user QOS requirements. Most importantly, the scanning duration is scheduled to guarantee the user QoS requirements while the scan progresses. Simulation results show that the proposed mechanism achieves relatively short service disruptions and provides the desired quality to users during the scanning period. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Multi‐media support is an important feature of third generation (3G) wireless communication systems, and Quality of Service (QoS) is a crucial issue, as in any other networking environment. In this paper, the QoS issues in the wireless last‐mile is investigated for 3G systems based on Wideband‐Code division multiple access (W‐CDMA). Supporting multiple rates in the CDMA environment introduces the power assignment problem, which is coupled with the bandwidth and error QoS parameters. Also, multi‐media traffic flows should be classified and serviced in such a way to provision delay guarantees. In this paper, a new framework, namely dynamic resource scheduling (DRS), is described and extensively studied. In order to serve multi‐media services with different requirements, a family of nine algorithms has been developed within the DRS framework. These algorithms can be categorized with respect to single or prioritized queuing architectures, fixed or variable rate bandwidth and power allocation, and variable spreading gain or multi‐code spreading strategies. The paper presents the performance of the DRS algorithms in comparison with each other and with conventional scheduled‐CDMA (S‐CDMA) and proposed schemes in the W‐CDMA standard. The performance for error and throughput QoS provisioning and power control dynamics are explored; advantages, disadvantages and limitations of the algorithms are discussed. The DRS framework is concluded to be a promising QoS architecture, with a simple, flexible, scalable structure that can be configured according to a given traffic scenario. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
To improve the limitations of Ethemet over Coax (EoC) technology in the bidirectional reformation of the hybrid fiber-coaxial (HFC) network, this paper proposes the concept of Ethernet passive electronic network (EPEN) based on multi-point control protocol (MPCP) and the hybrid access scheme of Ethernet passive optical network (EPON) and EPEN.This paper describes the network architecture of EPEN, and introduces the implementation scheme and design of the EPEN system.At present, the project group has been working on the core technology research and key software and hardware design of the EPEN system, on which we have accomplished the hardware design and debugging, the embedded software coding and debugging, the EPEN network management protocol design and software coding.However, there is still a lot to do to achieve networking capability, management, security, quality of service (QoS) and some other functions.  相似文献   

19.
Multipoint communications is the simultaneous transmission of data streams from a number of sources to a set of receivers in a group according to predetermined metrics. The core‐based approach in multipoint communication enhances potential solutions in terms of quality‐of‐service (QoS)‐efficiency and feasibility of the results in inter and intra‐domain routing. In this paper, we first analyse the solution space for constrained multipoint communication problems under the core‐based approach. We show that the range of solutions examined by the models proposed to date is restricted to a subset of the entire solution space, which restricts the potential efficiency of the results. We propose SPAN, a core‐based framework processing on our identified extended solution space for constrained multi‐source group applications. SPAN consists of core selection and tree construction as two modular components complimenting one another to achieve more efficient solutions in distributed processing. SPAN is also asymmetric, hence potentially operates in domains in which link weights are not necessarily equal in both directions. We analyse the computational and message complexity of our framework and show its feasibility for distributed deployment. Our performance results show that SPAN consistently outperforms its counterparts in the literature in terms of cost and QoS‐efficiency. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
This paper proposes a new multiuser scheduling algorithm that can simultaneously support a variety of different quality‐of‐service (QoS) user groups while satisfying fairness among users in the same QoS group in MIMO broadcast channels. Toward this goal, the proposed algorithm consists of two parts: a QoS‐aware fair (QF) scheduling within a QoS group and an antenna trade‐off scheme between different QoS groups. The proposed QF scheduling algorithm finds a user set from a certain QoS group which can satisfy the fairness among users in terms of throughput or delay. The antenna trade‐off scheme can minimize the QoS violations of a higher priority user group by trading off the number of transmit antennas allocated to different QoS groups. Numerical results demonstrate that the proposed QF scheduling method satisfies different types of fairness among users and can adjust the degree of fairness among them. The antenna trade‐off scheme combined with QF scheduling can improve the probability of QoS‐guaranteed transmission when supporting different QoS groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号