首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenol formaldehyde reaction solution (PFS) was used to synthesize urea–formaldehyde resins (PFSUF resins) with low formaldehyde content. In addition, the prepared PFSUF resins were used as adhesives to bond bamboo particleboards. Mechanical properties, fracture morphology, water absorption ratio, and dimensional stability of bamboo particleboards have been studied by tensile tests, SEM tests, water absorption analysis, and swelling ratio analysis, respectively. The results demonstrate that the main ingredient of PFS is phenol formaldehyde intermediate 2,4,6‐trimethylolphenate and proper amount of PFS can be used to reduce the formaldehyde content of UF resins effectively. The results also show that bamboo particleboards bonded with PFSUF resins exhibit better mechanical properties, water resistance, and dimensional stability than that bonded with pure UF resin. However, the results of TG and mechanical properties analysis exhibit that alternative curing agents to ammonium chloride should be studied to improve the curing properties of the PFSUF resins with low formaldehyde content. Taken together, this work provides a method of preparing environment‐friendly PFSUF resins with low phenol and low formaldehyde content and the prepared resins have potential application in wood industry. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42280.  相似文献   

2.
Melamine urea formaldehyde (MUF) thermosetting wood adhesives have poor performance at elevated temperatures and humid conditions. PolyFox PF-151N polymer was mixed at different loadings (0.05, 0.1, 0.5, and 1%) with MUF to improve properties, especially water resistance and bond strength. The physical properties of the optimized MUF/PolyFox PF-151N resins were measured. In order to evaluate the quality of optimized MUF/PolyFox PF-151N resins, particleboards were produced and physical and mechanical properties were investigated.

The results show that it is possible to add PolyFox PF-151N up to 0.1% to the MUF resin without altering the mechanical properties of the commercial MUF. The mechanical properties of the particleboard panels bonded with the optimal MUF/PolyFox PF-151N (99.9/0.1 by weight) resin were considerably increased as compared to the panels glued with neat MUF resin. The use of PolyFox significantly reduced 2-h and 24-h thickness swelling compared to the control panels.  相似文献   

3.
The objective of this study was to improve the durability and stability of urea–formaldehyde-bonded wood products by decreasing the internal stress developed during the resin cure and by improving the ability of the cured system to withstand cyclic stresses. Urea–formaldehyde resins were modified either by incorporating urea-capped di-and trifunctional amines into the resin structure or by using the hydrochloride derivatives of some of these amines as the curing agent, or by both methods. This study supplements our previous work by examining the effects of additional amines and subjecting bonded products to additional testing. Solid wood joints bonded with a variety (7 of 15) of modified adhesives had resistance to cyclic stress superior compared to that of joints bonded with unmodified urea–formaldehyde adhesive; at least three of the modified adhesives approached the behavior of phenol–formaldehyde-bonded joints. Resistance to moist heat aging, although still inferior to that of phenol–formaldehyde-bonded joints, was significantly improved for joints bonded with modified adhesives over joints made with unmodified resins. The fracture behavior of joints made with modified adhesives was different from that of joints made with unmodified resins. The fracture energy was greater for joints made with three of four modified adhesives than for joints made with unmodified resins. Modified adhesives produced particleboards made with enhanced cyclic stress resistance. Formaldehyde emission from particleboards made with resins modified with urea-terminated amines was less than emission from boards made with unmodified resins. However, emissions from particleboards made with amine hydrochlorides were not improved compared to those from boards made with an ammonium chloride curing agent. © 1993 John Wiley & Sons, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    4.
    Urea–formaldehyde-bonded wood products are limited to interior nonstructural applications because of their poor durability under cyclic moisture or humid environments. The stability of solid-wood joints and particleboards can be enhanced by bonding with urea–formaldehyde adhesives modified with di- and trifunctional amines at an effective resin formaldehyde-to-urea mol ratio (F/U) of 1.6; however, particleboard formaldehyde emissions were not improved over those from boards made with unmodified adhesives and were unacceptably high. The relative effectiveness of selected modifications was investigated at resin form aldehyde-to-urea (F/U) molar ratios of 1.4 and 1.2 Solid-wood joints and particleboards made with modified adhesives, an unmodified adhesive, and a phenol formaldehyde (PF) resin were subjected to cyclic soak-dry (cyclic stress) treatments and moist-heat aging. Formaldehyde emissions from particleboards were also determined. At F/U 1.4, the resistance of solid-wood joints made with modified adhesives to cyclic stress and moist-heat aging was equal to that of PF-bonded joints and superior to that of joints bonded with unmodified adhesive. The resistance of particleboards made with modified adhesives was greater than that of boards made with unmodified adhesive but less than that of PF-bonded board. Solid-wood joints and particleboards made with F/U 1.4 resins performed better than did those made with F/U 1.2 resins. Particleboards made with F/U 1.2 resins had formaldehyde emissions well below the standard, and room temperature aging or bonding at high temperature reduced emissions substantially. © 1994 John Wiley & Sons, Inc. 1
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    5.
    There is a global concern about the types of adhesives used for the binding of wood particles, most of which include formaldehyde in their formulation. The aim of this work is to study the effect of raw montmorillonite (Mt) particles on blended urea formaldehyde (UF)/soy protein (SP) adhesives for the manufacture of wood particleboards to reduce the use of this carcinogenic component. Rheology showed that Mt does not alter the viscosity of adhesives at high shear rates, so they can be applied by spray. Thermogravimetric analysis/derivative thermogravimetry (TGA/DTG) analysis revealed an enhancement of their thermal stability due to the presence of clay particles. Polymer–Mt interaction was studied by small amplitude X-ray scattering and scanning electron microscopy. According to these results, the exfoliated structure of the clay particles was achieved. Wood particleboards were manufactured with UF/SP/Mt adhesives in order to study their mechanical properties. The three-point bending test showed that Mt particles improved the modulus of both rupture and elasticity. UF/SP/Mt resins proved to be a prominent product for the development of environmentally friendlier particleboards with desirable mechanical properties.  相似文献   

    6.
    The aim of this work is to evaluate performances of tannin-based resins designed as adhesive in the plywood production. For this purpose, a part of phenol formaldehyde (PF) and melamine formaldehyde (MF) in the classic adhesive formulation was replaced by tannin. The physical properties of the formulated resins (rheological characterization, etc.) were measured. In order to analyze the mechanical performance of tannin-based resins, plywood panels were produced and the mechanical properties including tensile strength wood failure and three-point bending strength were investigated. The performance of these panels is comparable to those of plywood panels made by commercial PF and MF. The results showed that the plywood panels bonded with tannin–PF (PFT) and tannin–MF (MFT) resins exhibited better mechanical properties in comparison to the plywood panels made of commercials PF and MF. The introduction of small properties of tannin in PF and MF resins contribute to the improvement of the water performance of these adhesives. The formaldehyde emission levels obtained from panels bonded with tannin-based resins were lower than those obtained from panels bonded with control PF and MF. Although there are no actual reaction at all between PF, MF, and tannin, addition of tannin significantly improves the water resistance of PF and MF resins. This is a novel finding that manifests the possibility of replacing a convention PF and MF resins by tannin. Modified adhesive is one of the goals in the plywood production without changing any of their production conditions with improvement to their overall properties.  相似文献   

    7.
    The aim of this research was to investigate the influence of lignin modified by ionic liquids on physical and mechanical properties of plywood panels bonded with the urea–formaldehyde (UF) resin. For this purpose, soda bagasse lignin was modified by the 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) ionic liquid and then the various contents of unmodified and modified lignins (10, 15, and 20%) were added at pH=7 instead of second urea during the UF resin synthesis. The physicochemical properties of the prepared resins as well as the water absorption, shear strength, and formaldehyde emission of the plywood panels made with these adhesives were measured according to standard methods. According to Fourier Transform Infrared (FTIR) Spectrometry, by treatment of lignin, the C=O, C–C, and C–H bonds decrease while the content of the C–N bond dramatically increases. Based on the finding of this research, the performance of soda bagasse lignin in UF resins dramatically improves by modification by ILs; as the resins with modified lignin yielded lower formaldehyde emission and water absorption when compared to those made from unmodified lignin and commercial UF adhesives, respectively. The shear strength as well as wood failure percentages are lower for the panels produced with modified lignin than for the panels produced with UF resins alone.  相似文献   

    8.
    The objective of this work was to demonstrate the utility of lignin-based resins designed for application as an adhesive in the production of particleboard. Bond qualities of lignin-phenol-formaldehyde resins, phenolated-lignin-formaldehyde resins and commercial phenol-formaldehyde (PF-com) resin were assessed by using an automatic bonding evaluation system, prior to production of particleboards. In order to evaluate the quality of lignin-based resins, particleboards were produced and physical and mechanical properties were investigated. These physical properties included internal bond, modules of rupture and modulus of elasticity. Thickness swell and water absorption properties of particleboards bonded with lignin-based resins were also determined. The lignin-based resins have been reported previously in Part I of this study. The results showed that particleboards bonded with phenolated-lignin formaldehyde resins (up to 30% lignin content) exhibited similar physical and mechanical properties when compared to particleboards bonded with PF-com. The work has indicated that phenolated-lignin formaldehyde resins (up to 30% substitution level) can be used successfully as a wood adhesive for constructing particleboard. The performance of these panels is comparable to those of boards made using PF-com resin.  相似文献   

    9.
    Particleboards bonded with 6 and 12% melamine‐modified urea‐formaldehyde (UMF) resins were manufactured using two different press temperatures and press times and the mechanical properties, water resistance, and formaldehyde emission (FE) values of boards were measured in comparison to a typical urea‐formaldehyde (UF) resin as control. The formaldehyde/(urea + melamine) (F/(U + M)) mole ratio of UMF resins and F/U mole ratio of UF resins were 1.05, 1.15, and 1.25 that encompass the current industrial values near 1.15. UMF resins exhibited better physical properties, higher water resistance, and lower FE values of boards than UF resin control for all F/(U + M) mole ratios tested. Therefore, addition of melamine at these levels can provide lower FE and maintain the physical properties of boards. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

    10.
    The aim of this research was to investigate the physical and mechanical properties of plywood panels bonded with ionic liquid-modified lignin–phenol–formaldehyde (LPF) resin. For this purpose, soda bagasse lignin was modified by 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) ionic liquid, and then, various contents of modified lignins (10, 15, and 20 wt%) were added as a substitute of phenol in phenol–formaldehyde (PF) resin synthesis. The properties of the synthesized resin were compared with those of a control PF resin. The changes in curing behavior of the resins prepared were analyzed by differential scanning calorimetry (DSC). The physical properties of the resins prepared, as well as the water absorption, thickness swelling, shear strength, and formaldehyde emission of the plywood panels bonded with these adhesives, were measured according to standard methods. DSC analysis indicated that in comparison with PF resins, curing of the LPF resin occurred at lower temperatures. The physical properties of the synthesized resins indicated that viscosity and solid content increased, while gel time and density decreased by addition of treated lignin to the PF resin. Although the panels containing resins with modified lignin yielded low formaldehyde emission, their dimensional stability was worse than those bonded with a commercial PF adhesive. The plywood prepared using IL-treated lignin PF resins has shear strength, which satisfy the requirements of the relevant standards specifications and significantly better than that of panels prepared with the control PF resin. The mechanical properties of the panels could be significantly enhanced with increased percentage of treated lignin content from 0 to 20 wt%.  相似文献   

    11.
    Condensed tannins are phenolic in nature and undergo reaction with formaldehyde to form resins. Tannin/formaldehyde condensates tend to have a low degree of condensation resulting in bonds lacking strength and water resistance. Small amounts of short-length phenol/resorcinol/formaldehyde, phenol/formaldehyde, and urea/formaldehyde polymers are used to increase the degree of polymerization of tannin-formaldehyde resins, decreasing brittleness and increasing water resistance. Furfural is used to plasticize tannin/formaldehyde resins to improve the distribution of stress forces on the glueline, overcoming weakness due to stress concentration. Exterior plywood panels were prepared using these modified tannin/formaldehyde resins as adhesives. The modified tannin/formaldehyde adhesives perform well, have similar characteristics to and are as easy to use as phenol/formaldehyde adhesives, and also have a few advantages, especially tolerance to faster pressing times.  相似文献   

    12.
    Combined mixtures of polymeric diphenylmethane diisocyanates (pMDI) with Urea‐formaldehyde‐resins (UF) adhesives for wood panels are shown (a) by X‐ray diffraction analysis (XRD) of the cured adhesive to present a certain percentage of microcrystallinity, this being due exclusively to the proportion of urea‐formaldehyde resin present in the mix and, (b) by polarized light optical microscopy (PLOM) to present colloidal structures in which oligomers and colloidal structures of one resin have migrated within the colloidal structures of the other resin. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2633–2636, 2007  相似文献   

    13.
    To lower the formaldehyde emission of wood‐based composite panels bonded with urea–formaldehyde (UF) resin adhesive, this study investigated the influence of acrylamide copolymerization of UF resin adhesives to their chemical structure and performance such as formaldehyde emission, adhesion strength, and mechanical properties of plywood. The acrylamide‐copolymerized UF resin adhesives dramatically reduced the formaldehyde emission of plywood. The 13C‐NMR spectra indicated that the acrylamide has been copolymerized by reacting with either methylene glycol remained or methylol group of UF resin, which subsequently contributed in lowering the formaldehyde emission. In addition, an optimum level for the acrylamide for the copolymerization of UF resin adhesives was determined as 1%, when the formaldehyde emission and adhesion strength of plywood were taken into consideration. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

    14.
    Nine structural adhesives with varying pH were selected to examine the effect of adhesive pH on wood–adhesive bond quality. The adhesives evaluated included four highly alkaline phenol–formaldehyde, one intermediate pH phenol–resorcinol–formaldehyde, two acidic melamine–urea–formaldehyde, and two acidic melamine–formaldehyde resins. Block shear specimens were prepared using Douglas‐fir and black spruce wood. The adhesive performance was evaluated by measuring the shear properties (strength and wood failure) of the specimens tested at the dry and vacuum–pressure–redry (VPD) conditions. Adhesive pH, test condition, and wood species showed significant effects on shear properties. The different adhesives performed differently at the dry and VPD conditions. The high‐pH adhesives (phenol–formaldehyde and phenol–resorcinol–formaldehyde) showed similar high wood failures at both test conditions and performed better than the low‐pH adhesives (melamine–formaldehyde and melamine–urea–formaldehyde), especially after the VPD conditioning. The low‐pH adhesives showed high wood failure at the dry condition, but wood failure decreased significantly after VPD conditioning for both species, indicating that the low‐pH adhesives were less durable than the high‐pH adhesives. High‐pH adhesives did not have a negative impact on the strength of the bonded specimens. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

    15.
    The aim of this work was to validate the utility and performance of optimal laboratory cornstarch–mimosa tannin-based resins in the industrial particleboard production. In this way, the cornstarch and mimosa tannin was introduced in the classic adhesive formulation in order to supply a part of urea-formaldehyde (UF). Our results show that industrial particleboard panels (8.2?m?×?1.85?m?×?19?mm) bonded with optimal cornstarch–mimosa tannin–UF (10:4:86; mass ratio) resins exhibited comparable mechanical properties to those of boards bonded with commercial UF resins and largely satisfied the exigencies of European norms EN 312. The formaldehyde emission levels obtained from panels bonded with cornstarch–mimosa tannin–UF were lower to those obtained from panels bonded with control UF. Finally, the addition of cornstarch and mimosa tannin improves markedly the water resistance of UF resins.  相似文献   

    16.
    The effects of posttreatments of particleboard adhesive‐type urea–formaldehyde resins were studied. The resins were synthesized with formaldehyde/first urea (F/U1) mol ratios of 1.40, 1.60, 1.80, 2.10, and 2.40 and then the second urea was added to give a final formaldehyde/urea ratio of 1.15 in alkaline pH. The resins were posttreated at 60°C for up to 13.5 h and the 2.5‐h heat‐treated resin samples were stored at room temperature for up to 27 days. Resins sampled during the posttreatments were examined by 13C‐NMR and evaluated by bonding particleboards. In the posttreatments, hydroxymethyl groups on the polymeric resin components dissociated to formaldehyde and reacted with the second urea, and methylene and methylene–ether groups were formed from reactions involving the second urea. Methylene–diurea and urea groups bonded to UF polymers were identified. As a result, the viscosity of the resins initially decreased but later increased along with the cloudiness of the resins. Bond‐strength and formaldehyde‐emission values of particleboard varied with posttreatment variables as well as with the F/U1 mol ratios used in the resin syntheses. The results would be useful in optimizing resin synthesis and handling parameters. Various reaction mechanisms were considered. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1896–1917, 2003  相似文献   

    17.
    Liquefaction of southern pine wood in phenol in 30–40 : 70–60 weight ratios resulted in homogeneous liquefied materials, which were directly used to synthesize phenol–formaldehyde (PF)‐type resins. The synthesized resins showed good physical and handling properties: low viscosity, stability for storage and transportation, and resin applicable by a common sprayer. Particleboard panels bonded with the synthesized resins showed promising physical properties and significantly lower formaldehyde emission values than those bonded with the urea–formaldehyde resin control. One deficiency observed for the synthesized resins was lower internal bond values, which might be overcome the use of a hot‐stacking procedure. Overall, the process of wood liquefaction with limited amounts of phenol as a solvent was shown to have the potential of providing practical, low‐cost PF‐type resins with very low formaldehyde emission potentials. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

    18.
    The aim of this study was the reduction of formaldehyde emission from particleboard by phenolated Kraft lignin. For this purpose, the lignin was extracted from black liquor and then modified by phenolation. During the urea formaldehyde (UF) resin synthesis different proportions of unmodified and phenolated Kraft lignins (10%, 15%, and 20%) were added at pH = 7 instead of the second urea. Physicochemical properties and structural changes of resins so prepared, as well as the internal bond (IB) strength and formaldehyde emission associated with the panels bonded with them were measured according to standard methods. The Fourier transform infrared (FTIR) analysis of lignin indicated that the content of O–H bonds increased in phenolated lignin while the aliphatic ethers C–O bonds decreased markedly in the modified lignin. Since both synthesis of UF resins and lignin phenolation are carried out under acid conditions, phenolation is an interesting way of modifying lignin for use in wood adhesive. The panels bonded with these resins showed significantly lower formaldehyde emission compared to commercial UF adhesives. The UF resin with 20% phenolated lignin exhibited less formaldehyde release without significant differences in internal bond strength and physicochemical properties compared to an unmodified UF resin. XRD analysis results indicated that addition of phenolated lignin decreased the crystallinity of the hardened UF resins.  相似文献   

    19.
    Typical particleboard wood‐adhesive urea–formaldehyde (UF) resins, synthesized with formaldehyde/first urea (F/U1) mol ratios of 1.80, 2.10, and 2.40 and the second urea added to an overall F/U ratio of 1.15, in weak alkaline pH, were allowed to stand at room temperature over a period of 50 days. 13C‐NMR of time samples taken over the storage period showed gradual migration of hydroxymethyl groups from the polymeric first‐urea components to the monomeric second‐urea components and also an advancing degree of polymerization of resins by forming methylene and methylene ether groups involving the second urea. These phenomena that varied with the F/U1 mol ratios used in the resin syntheses due to the varying polymer branching structures resulted in the first step of resin synthesis. Varying viscosity decreases and increases of the resins also occurred. Due to these chemical and physical changes, the particleboards that bonded with the sampled resins showed varying bond strength and formaldehyde‐emission values, indicating process optimizations possible to improve bonding and formaldehyde‐emission performances. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1155–1169, 2001  相似文献   

    20.
    The aim of the present study was to upgrade the bonding quality and water resistance of medium-density particleboards based on rice husks (RH) as a wood substitute and soybean protein concentrate (SPC) as the binder via chemical modification of SPC. Alkali (A), citric acid (CA) and boric acid (BA) were used to modify proteins and the carbohydrate complex in SPC. The effect of chemical treatment performed on SPC was followed by Fourier transform infrared, differential scanning calorimetry, thermo-gravimetric analysis and initial apparent viscosity measurements. Board properties were evaluated in terms of internal bond (IB) and physical properties. Results revealed that boards bonded with SPC treated with boric acid, exhibited the highest IB and the lowest water absorption and thickness swelling at 2 and 24 h, due to cross-linking reactions with exposed OH-groups in the amorphous region of cellulose of RH. Results demonstrate that boric acid-modified–SPC-bonded boards met the requirements of IB recommended by the US Standard ANSI A208.1-2009 for M1, MS, M2 and M3-grade medium-density particleboards but failed to pass the thickness swelling required. This issue of BSPC-RH boards is compensated for by the benefit of being formaldehyde-free which makes them suitable for indoor applications.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号