首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: To obtain a biodegradable thermoplastic elastomer, a series of poly(ester‐ether)s based on poly(butylene succinate) (PBS) and poly(propylene glycol) (PPG), with various mass fractions and molecular weights of PPG, were synthesized through melt polycondensation. RESULTS: The copolyesters were characterized using 1H NMR, gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, mechanical testing and enzymatic degradation. The results indicated that poly(ester‐ether)s with high molecular weights were successfully synthesized. The composition of the copolyesters agreed very well with the feed ratio. With increasing content of the soft PPG segment, the glass transition temperature decreased gradually while the melting temperature, the crystallization temperature and the relative degree of crystallinity decreased. Mechanical testing demonstrated that the toughness of PBS was improved significantly. The elongation at break of the copolyesters was 2–5 times that of the original PBS. Most of the poly(ester‐ether) specimens were so flexible that they were not broken in Izod impact experiments. At the same time, the enzymatic degradation rate of PBS was enhanced. Also, the difference in molecular weight of PPG led to properties being changed to some extent among the copolyesters. CONCLUSION: The synthesized poly(ester‐ether)s having excellent flexibility and biodegradability extend the application of PBS into the areas where biodegradable thermoplastic elastomers are needed. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
Series of copolyesters based on poly(propylene succinate) (PPS) and poly(butylene succinate) (PBS), which can be produced from biological feedstock, and postconsumer poly(ethylene terephthalate) (PET) were synthesized with the aim of developing sustainable materials, which combine the mechanical properties of high performance elastomers with those of flexible plastics. The aliphatic polyesters were synthesized by the catalyzed two‐step transesterification reaction of dimethyl succinate, 1,3‐propanediol, and 1,4‐butanediol followed by melt reaction with PET in bulk. The content of PET segments in the polymer chains was varied from about 10 to 100 wt % per 100 wt % PPS or PBS. The effect of the introduction of the PET segments on the structure, thermal, physical, and mechanical properties was investigated. The composition and structure of these aliphatic/aromatic copolyesters were determined by NMR spectroscopy. The thermal properties were investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The level of crystallinity was studied by means of DSC and wide‐angle X‐ray scattering. A depression of melting temperature and a reduction of crystallinity of copolyesters with increasing content of PET segments were observed. Consequently, the tensile modulus and strength of copolyesters decreased, and the elongation at break increased with PET content in the range of 10?50 wt %. Thus, depending on PET content, the properties of copolyesters can be tuned ranging from semicrystalline polymers possessing good tensile modulus (380 MPa) and strength (24 MPa) to nearly amorphous polymer of high elongation (~800%), and therefore they may find applications in thermoplastics as well as elastomers or impact modifiers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39815.  相似文献   

3.
A series of biodegradable isosorbide‐based copolyesters poly(butylene succinate‐co‐isosorbide succinate‐co‐polyethyleneoxide succinate) (PBxIyEzS) were synthesized via bulk polycondensation in the presence of dimethyl succinate (DMS), 1,4‐butanediol (BDO), poly(ethylene glycol) (PEG) and isosorbide (ISO). The crystallization behaviors, crystal structure and spherulite morphology of the copolyesters were analyzed by differential scanning calorimetry (DSC), wide angle X‐ray diffraction (WAXD) and polarizing optical microscopy (POM), respectively. The results indicate that the crystallization behavior of the copolyesters was influenced by the content of isosorbide succinate (IS) and polyethyleneoxide succinate (PEOS) units, which further tuned the mechanical and biodegradable properties of the copolyesters. The PBxIyEzS copolyesters, compared to pure poly(butylene succinate), showed lower crystallization temperature, melting temperature, degree of crystallinity and degradation rate while a significant increase in glass transition temperature with increasing isosorbide content. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
Poly(ether ester) block copolymers were prepared using a transesterification/polycondensation bulk synthesis with systematic control of the terephthalic acid/butane-diol aromatic diester block (`hard segment') and with poly(tetramethylene oxide) [PTMO], poly(hexamethylene oxide) [PHMO], or poly(decamethylene oxide) [PDMO] poly(alkylene oxide) soft segments. The respective number average molecular weights were 980, 930, and 940 Da. A series of the poly(ether ester)s with hard segment fractions of 25, 29, 37, and 51% were prepared. One example of the PDMO polyester was prepared at a 51% hard segment fraction. The polyesters were characterized using viscometry, gel permeation chromatography, 1H-NMR spectroscopy, differential scanning calorimetry, and tensile testing. The novel poly(ether ester)s, the PTMO polyester, and the commercial control, Hytrel® 4056, were compared for their resistance to degradation in a 50% aqueous hydrogen peroxide solution at 37°C, boiling water buffered at pH 1 and 13, an oxygen stream at 200°C, and a nitrogen stream at 200°C. The Hytrel® 4056 and the PTMO polyesters fragmented in hydrogen peroxide within 24 h while the PHMO and PDMO polyesters were much less degraded. Resistance to hydrolytic and thermal degradation increased as the ratio of aliphatic methylene to ether increased: PTMO < PHMO < PDMO. Samples containing higher hard segment fractions demonstrated improved resistance to hydrolysis. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:1319–1332, 1997  相似文献   

5.
A series of aliphatic biodegradable poly (butylene succinate‐co‐ethyleneoxide‐co‐DL ‐lactide) copolyesters were synthesized by the polycondensation in the presence of dimethyl succinate, 1,4‐butanediol, poly(ethylene glycol), and DL ‐oligo(lactic acid) (OLA). The composition, as well as the sequential structure of the copolyesters, was carefully investigated by 1H‐NMR. The crystallization behaviors, crystal structure, and spherulite morphology of the copolyesters were analyzed by differential scanning calorimetry, wide angle X‐ray diffraction, and polarizing optical microscopy, respectively. The results indicate that the sequence length of butylene succinate (BS) decreased as the OLA feed molar ratio increasing. The crystallization behavior of the copolyesters was influenced by the composition and sequence length of BS, which further tuned the mechanical properties of the copolyesters. The copolyesters formed the crystal structures and spherulites similar to those of PBS. The incorporation of more content of ethylene oxide (EO) units into the copolyesters led to the enhanced hydrophilicity. The more content of lactide units in the copolyesters facilitated the degradation in the presence of enzymes. The morphology of the copolyester films after degradation was also studied by the scanning electron microscopy. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Two series of poly(ether urethane)s and one series of poly(ester urethane)s were synthesized, containing, respectively, poly(oxytetramethylene) diol (PTMO) of M n = 1000 and 2000 and poly(ε‐caprolactone) diol of M n = 2000 as soft segments. In each series the same hard segment, i.e., 4,4′‐(ethane‐1,2‐diyl)bis(benzenethiohexanol)/hexane‐1,6‐diyl diisocyanate, with different content (~ 14–72 wt %) was used. The polymers were prepared by a one‐step melt polymerization in the presence of dibutyltin dilaurate as a catalyst, at the molar ratio of NCO/OH = 1 (in the case of the polymers from PTMO of M n = 1000 also at 1.05). For all polymers structures (by FTIR and X‐ray diffraction analysis) and physicochemical, thermal (by differential scanning calorimetry and thermogravimetric analysis), and tensile properties as well as Shore A/D hardness were determined. The resulting polymers were thermoplastic materials with partially crystalline structures (except the polymer with the highest content of PTMO of M n = 2000). It was found that the poly(ether urethane)s showed lower crystallinity, glass‐transition temperature (Tg), and hardness as well as better thermal stability than the poly(ester urethane)s. Poly(ether urethane)s also exhibited higher tensile strength (up to 23.5 MPa vs. 20.3 MPa) and elongation at break (up to ~ 1950% vs. 1200%) in comparison with the corresponding poly(ester urethane)s. Among the poly(ether urethane)s an increase in soft‐segment length was accompanied by an increase in thermal stability, tensile strength, and elongation at break, as well as a decrease in Tg, crystallinity, and hardness. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Short‐segmented block copolymers of poly(butylene succinate‐co‐butylene fumarate) were synthesized and their crystallinity and crosslinking behavior were investigated. 1H NMR was used to characterize the microstructure and composition of the copolyesters. Molecular weight determination was performed using gel permeation chromatography. Based on the DSC results all copolyesters were crystalline and the degree of crystallinity of the copolymers did not change with butylene fumarate mole fraction due to co‐crystallization of the butylene succinate and butylene fumarate groups. Crosslinked copolyesters showed a lower crystallization rate and degree of crystallinity while the crystallization temperature shifted to higher temperatures compared with uncrosslinked copolyesters due to the formation of nucleating agents by crosslinkages. Photo‐DSC was used to investigate the crosslinking kinetics for UV‐initiated photo‐curing. Three kinetics parameters including the rate constant (k) and the orders of the initiation and propagation reactions (m and n, respectively) were determined for the quenched and unquenched copolymers. © 2016 Society of Chemical Industry  相似文献   

8.
Biodegradable polyesters such as poly(butylene succinate) (PBS), poly(propylene succinate) (PPS), and poly(butylene succinate‐co‐propylene succinate)s (PBSPSs) were synthesized respectively, from 1,4‐succinic acid with 1,4‐butanediol and 1,3‐propanediol through a two‐step process of esterification and polycondensation in this article. The composition and physical properties of both homopolyesters and copolyesters were investigated via 1H NMR, DSC, TGA, POM, AFM, and WAXD. The copolymer composition was in good agreement with that expected from the feed composition of the reactants. The melting temperature (Tm), crystallization temperature (Tc), crystallinity (X), and thermal decomposition temperature (Td) of these polyesters decreased gradually as the content of propylene succinate unit increased. PBSPS copolyesters showed the same crystal structure as the PBS homopolyester. Besides the normal extinction crosses under the polarizing optical microscope, the double‐banded extinction patterns with periodic distance along the radial direction were also observed in the spherulites of PBS and PBSPS. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
A series of aliphatic copolyesters was synthesized using newly prepared cyclohexane‐based alicyclic diacid, succinic acid and 1,4‐butanediol with various molar ratios, in order to investigate the effects of these compositions on the crystallinity and thermal properties of the aliphatic copolyesters. The structures, average molecular weights and physical properties of the resulting random aliphatic copolyesters were characterized using nuclear magnetic resonance, gel permeation chromatography, differential scanning calorimetry (DSC) and X‐ray diffraction. The results of DSC reveal that thermal and crystallization behaviors depend on the corresponding diacid comonomer (1,4‐bis[(carboxylethoxy)methyl]cyclohexane) content in the aliphatic copolymers. However, the crystalline structures of the aliphatic copolyesters and of poly(butylene succinate) homopolymer are identical. Copyright © 2011 Society of Chemical Industry  相似文献   

10.
Huge hydrogenated phenanthrene ring segments were introduced into the main chain of poly(butylene succinate) by polymerization of succinic acid (SA), 1,4‐butanediol (BD) and rosin maleopimaric acid anhydride (RMA), which was obtained from maleic rosin. The chemical structure and composition of the copolyesters were determined with the aid of 1H‐NMR, FTIR and elemental analysis. The thermal properties, crystallization behaviour and mechanical properties of the copolyester were then investigated using differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), polarized light microscopy (PLM) and mechanical testing. With increasing content of hydrogenated phenanthrene ring segments, the melting temperature, the crystallization temperature and the relative degree of crystallinity decreased gradually, but the elongation at break and the notched impact strength of poly(butylene succinate) were enhanced without a significant deterioration of tensile strength. Copyright © 2006 Society of Chemical Industry  相似文献   

11.
A thermoplastic poly(ether ester) elastomer (TPEE) is composed of polyester hard segments and polyether soft segments. Polyester and polyether segments are often homopolymer segments. This work aims at incorporating poly(butylene phthalate (PBP) as co‐hard segments in the hard segments of poly(butylene terephthalate) (PBT)‐b‐poly(tetramethylene oxide) (PTMO) thermoplastic elastomer, and investigating structures and properties of the resulting materials, denoted as (PBT‐co‐PBP)‐b‐PTMO. (PBT‐co‐PBP)‐b‐PTMO was synthesized from dimethyl terephthalate (DMT), dimethyl phthalate (DMP), PTMO (Mn = 1000 g/mol), and 1,4‐butanediol (BDO). The crystallinity of (PBT‐co‐PBP)‐b‐PTMO first decreased and then increased with increasing PBP content from 5% to 10% due to a decrease in the average sequence length of the PBT hard segments. Its elongation at break was increased by 200–350%. When the mass fractions of PBT and PBP were 42% and 8%, respectively, the (PBT‐co‐PBP)‐b‐PTMO showed the best performance in terms of permanent deformation, strength, and hardness whose values were 30%, 25 MPa, and 37 D, respectively. All the synthesized copolymers had good thermal stability with a decomposition temperature of 400°C or so. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43337.  相似文献   

12.
Segmented copolymers were synthesized using the crystallizable bisesterdiamide segment (N,N′‐bis(p‐carbomethoxybenzoyl)ethanediamine) T2T‐dimethyl (a one‐and‐a‐half repeating unit of nylon 2,T) and poly(tetramethyleneoxide) segments. Poly(tetramethyleneoxide) (PTMO) is amorphous and has a low Tg. The segment length was varied from 650 to 2800 g/mol by extending PTMO650 using dimethyl isophthalate. The polymers were synthesized in the melt, and test samples were prepared by injection molding. The melting behavior, as well as the torsion modulus spectrum as a function of temperature, were studied using DSC and DMA, respectively. The T2T‐PTMO polymers were found to have sharp glass (Tg) and flow transitions (Tfl), and the modulus at the rubbery plateau appeared to be virtually temperature independent. The Tg value was found to be independent of the diamide concentration, thus indicating that the T2T segments were fully crystallized. The Tfl was found to decrease with increasing soft segment length; this was ascribed to a “solvent” effect of the amorphous phase of the crystalline T2T units. The difference between the melting and crystallization temperatures was found to be low, thus suggesting that on cooling, there is a high rate of crystallization. When ethanediol was added as a T2T segment extender, amide‐ester‐amide segments were introduced. These amide‐ester‐amide segments form a separate lamellar phase with a much higher melting temperature (>300°C). It was found that the crystallization rate of the T2T units was enhanced by the presence of the amide‐ester‐amide segments, indicating that upon cooling, the crystallized amide‐ester‐amide segments form the nucleation sites for the nonextended T2T segments. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1173–1180, 2001  相似文献   

13.
It is indispensable to investigate hydrolytic degradation behavior to develop novel (bio)degradable polyesters. Biobased and biodegradable copolyesters poly(butylene adipate‐co ‐butylene furandicarboxylate) (PBAF) and poly(butylene succinate‐co ‐butylene furandicarboxylate) (PBSF) with BF molar fraction (?BF) between 40 and 60% were synthesized in this study. The hydrolytic degradation of film samples was conducted in a pH 7.0 PBS buffer solution at 25 °C. Slight mass loss (1–2%) but significant decrease in intrinsic viscosity (35–44%) was observed after 22 weeks. The apparent hydrolytic degradation rate decreased with increasing ?BF and initial crystallinity. Meanwhile, PBAFs degraded slightly faster than PBSFs with the same composition. The ?BF and crystallinity increased slowly with degradation time, suggesting the aliphatic moiety and the amorphous region are more susceptible to hydrolysis. And high enough tensile properties were retained after hydrolysis degradation, indicating PBAF and PBSF copolyesters are hydrolytically degradable, with tunable hydrolytic degradation rate and good balance between hydrolytic degradability and durability. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44674.  相似文献   

14.
Biodegradable homopolyesters such as poly(butylene succinate) (PBSU) and poly(butylene adipate) (PBAD) and copolyesters such as poly(butylene succinate-co-butylene adipate) (PBSA) were synthesized, respectively, from succinic acid (SA) and adipic acid (AA) with 1,4-butanediol through a two-step process of esterification and deglycolization. The polyester compositions and physical properties of both homopolyesters and copolyesters were investigated by 1H– and 13C–NMR, DSC, GPC, WAXD, and optical polarizing microscopy. The melting point (Tm) of these copolyesters decreased gradually as the contents of butylene adipate increased and the glass-transition temperature (Tg) of these copolyesters decreased linearly as the contents of the adipoyl unit increased. PBSA copolyesters showed two types of XRD patterns of PBSU and PBAD homopolyesters. Furthermore, the biodegradation and hydrolytic degradation of the high molecular weight PBSU homopolyester, PBAD homopolyester, and PBSA copolyesters were investigated in the composting soil and NH4Cl aqueous solutions at a pH level of 10.6. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2808–2826, 2001  相似文献   

15.
A series of poly(R‐3‐hydroxybutyrate)/poly(ε‐caprolactone)/1,6‐hexamethylene diisocyanate‐segmented poly(ester‐urethanes), having different compositions and different block lengths, were synthesized by one‐step solution polymerization. The molecular weight of poly(R‐3‐hydroxybutyrate)‐diol, PHB‐diol, hard segments was in the range of 2100–4400 and poly(ε‐caprolactone)‐diol, PCL‐diol, soft segments in the range of 1080–5800. The materials obtained were investigated by using differential scanning calorimetry, wide angle X‐ray diffraction and mechanical measurements. All poly(ester‐urethanes) investigated were semicrystalline with Tm varying within 126–148°C. DSC results showed that Tg are shifted to higher temperature with increasing content of PHB hard segments and decreasing molecular weight of PCL soft segments. This indicates partial compatibility of the two phases. In poly(ester‐urethanes) made from PCL soft segments of molecular weight (Mn ≥ 2200), a PCL crystalline phase, in addition to the PHB crystalline phase, was observed. As for the mechanical tensile properties of poly(ester‐urethane) cast films, it was found that the ultimate strength and the elongation at the breakpoint decrease with increasing PHB hard segment content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 703–718, 2002  相似文献   

16.
The morphology of poly(ether ester)s (PEES) of the general formula [(4GT)k-PTMO]z has been investigated by wide and small angle X-ray scattering and electron microscopy techniques. The copolymers are based on poly(tetramethylene terephthalate) (4GT) “hard” segments (containing an average number k of consecutive 4GT units) alternating poly(tetramethylene oxide) (PTMO) “soft” segments of constant length (MW ~ 900). The fraction of crystallized 4GT slightly increases by increasing the weight fraction of PTMO up to ca. 0.5; then it rapidly decreases so that an amorphous material is obtained for a PTMO weight fraction of 0.76. PEES display a lamellar-type morphology in which lamellar domains of crystalline 4GT alternate with slightly heterogeneous interlamellar amorphous regions containing both 4GT and PTMO. For high contents of PTMO these domains evolve toward amorphous domains formed by short 4GT segments (k = 2, 3). PEES and the structurally related poly(ether esteramide)s are compared in terms of their morphological structure.  相似文献   

17.
The conformational changes, crystal structure and melting behavior of poly(ethylene/trimethylene terephthalate) (ET) copolyesters were investigated using in situ Fourier transform infrared (FTIR) spectroscopy, wide‐angle X‐ray diffraction (WAXD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) under isothermal crystallization conditions. The results show that the minimum melting temperature was observed in ET53, in which the relative amount of ethylene glycol (EG) to 1,3‐propanediol (PDO) was 52.68/47.32 and the PDO‐dimethyl terephthalate (DMT)‐PDO segments in the molecular chain dominated the crystal formation. The minimum crystallinity of ET copolyesters was found in ET66, in which the relative amount of EG/PDO was 65.91/34.09 and the EG‐DMT‐EG segments in the molecular chain dominated the crystal formation. A rapid and continuous conformational transition in ET copolyesters was observed using in situ FTIR in the first 10 min under isothermal crystallization conditions. The continuously adjusting conformation in the molecules reflects the crystallization of ET copolyesters. Based on the DSC and the X‐ray analyses of the crystallization behavior in the ET copolyesters, crystalline conformation transitions of molecules in ET copolyesters take place rapidly and early. Copyright © 2012 Society of Chemical Industry  相似文献   

18.
Based on 1,4‐succinic acid, 1,4‐butanediol, poly(ethylene glycol)s and dimethyl terephthalate, biodegradable segmented multiblock copolymers of poly[(butylene terephthalate)‐co‐poly(butylene succinate)‐block‐poly(ethylene glycol)] (PTSG) were synthesized with different poly(butylene succinate) (PBS) molar fractions and varying the poly(ethylene glycol) (PEG) segment length, and were evaluated as biomedical materials. The copolymer extracts showed no in vitro cytotoxicity. However, sterilization of the copolymers by gamma irradiation had some limited effect on the cytotoxicity and mechanical properties. A copolymer consisting of PEG‐1000 and 20 mol% PBS, assigned as 1000PBS20 after SO2 gas plasma treatment, sustained the adhesion and growth of dog vascular smooth muscle cells. The in vivo biocompatibility of this sample was also measured subcutaneously in rats for 4 weeks. The assessments indicated that these poly(ether ester) copolymers are good candidates for anti‐adhesion barrier and drug controlled‐release applications. Copyright © 2004 Society of Chemical Industry  相似文献   

19.
A multiblock copolymer (BCP) containing amorphous poly(aryl ether ketone) (PAEK) and thermotropic liquid crystalline polymer (TLCP) segments was synthesized. The chemical structure and properties of BCP were characterized by fourier‐transform infrared spectrometer (FTIR), differential scanning calorimeter (DSC), gel permeation chromatograms (GPC), thermogravimetry analysis, polar light microscope (PLM), and solubility test respectively. BCP can dissolve in chloroform because of soluble PAEK block bonded with TLCP block, which was insoluble. The peak of the original PAEK oligomer was no more present in the GPC traces of the block copolymer. These facts indicated that polymer synthesized should be copolymers of the two components rather than blends. A single Tg at 138.1°C and broad melting endotherm at 315.7°C can be observed. The liquid crystalline texture of BCP showed uniformity in the view after heat treated for 10 min above its Tm under PLM. Ternary blends of poly(ether ether ketone) (PEEK)/TLCP/BCP were prepared by extrusion and characterized by DSC. DSC results showed that the crystallization temperature of PEEK phase in the blends shifted higher with the addition of TLCP. Wide angle X‐ray diffraction investigations indicated that the crystalline structure of PEEK was not disturbed by blending or compatibilizing. Scanning electron microscope and mechanical tests confirmed the compatibilizing effect of BCP. Reduction in dispersed phase TLCP size was observed when 2 phr by weight of compatibilizer was added to the blend. Measurement of the tensile properties showed increased elongation as well as improved modulus and strength to some extent. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

20.
A series of novel aliphatic poly(β‐thioether ester)s with various methylene group contents were prepared by direct lipase‐catalyzed polycondensation of the monomer with an acid‐labile β‐thiopropionate group. The polycondensation reaction using immobilized lipase B from Candida antarctica was carried out in diphenyl ether at 90 °C. Poly(β‐thioether ester)s with high molecular weights of 20 500–57 000 Da and narrow polydispersities in the range 1.40–1.48 were obtained. Thermogravimetric analysis, differential scanning calorimetry and wide‐angle X‐ray diffraction were used to investigate the thermal properties and crystal structures of these polyesters. All the poly(β‐thioether ester)s were semicrystalline polymers and thermally stable up to at least 200 °C. In vitro degradation studies showed that they can rapidly degrade under acidic conditions by the hydrolysis of the β‐thiopropionate groups, suggesting their potential as acid‐degradable polymeric materials. © 2019 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号