首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2,4‐Toluene diisocyanate, poly(propylene glycol), poly(ethylene glycol) (PEG) and 2‐hydroxyethyl methacrylate were used to synthesize PEG–UA (urethane acrylate) monomer. The crosslinked polymer and gel polymer electrolytes were prepared in dioxane by free radical polymerization. The swelling behaviour, thermal degradation properties, morphology and ionic conductivity of the gel polymer electrolytes were investigated. With decrease in the proportion of dioxane used, the synthesized polymer's network density increased, its affinity with a solution of 1 M LiClO4 in propylene carbonate (PC) decreased, and more microgel which diffused in the network. At the same time, the conductivity increased and reached 4 × 10?4 S cm?1 at 25 °C. Copyright © 2003 Society of Chemical Industry  相似文献   

2.
This work investigates the relationship between structure and aromatic solvent permeability of polyurethanes based on trimethylolpropane (TMP) as a classical crosslinker and self‐made hyperbranched polyesters (HBPEs) as newly developed crosslinking agents. For this purpose three groups of samples were synthesized using toluene diisocyanate, poly(tetramethylene glycol) and different pseudo‐generation numbers of crosslinkers in the variable hard segment content. The results obtained from characterization tests indicate that replacing TMP by HBPE leads to an increase of crosslink density resulting in significant reduction of sorption capacity and conversely leads to an increase of the diffusion coefficient due to the lower glass transition temperature (Tg) of soft segments. In this way, the toluene permeability of hyperbranched polyurethane (HBPU) is considerably lower than that of classical polyurethane. The HBPUs with sufficient amount of hard segment have the lowest solvent uptake and diffusion coefficient leading to optimal barrier performance. By increasing the generation number of HBPE, the crosslink density of HBPU increases, but the crystallinity as well as Tg of soft segments decrease. These two contradictory changing trends of the structural characteristics cause a slight decrease in sorption coefficient of membranes and an increase of diffusivity. Therefore the barrier performance of HBPUs is weakened with increasing generation number of crosslinkers. © 2015 Society of Chemical Industry  相似文献   

3.
Two novel polyethers, one comb‐like and another hyperbranched, were synthesized by the cationic ring‐opening polymerization of 3‐(methoxy(triethylenoxy))methyl‐ and 3‐(hydroxy‐(triethylenoxy))methyl‐3′‐methyloxetane, respectively. The former reacted with a multifunctional isocyanate and the latter with a difunctional isocyanate to give rise to the corresponding crosslinked poly(ether urethane) elastomers, PCEU and PHEU. Accordingly, two kinds of solid polymer electrolytes (SPEs) were prepared from these two elastomers in situ in the presence of lithium salt trifluoromethanesulfonimide. It was found that the PCEU‐based SPEs shows a higher ionic conductivity than that PHEU‐based ones due to its more mobile pendent chains and appropriate crosslinking density in the polymeric network. The maximum ionic conductivities of 1.4 × 10?5 S/cm at 30°C and 3.5 × 10?4 S/cm at 80°C were attained at the molar ratio of O/Li = 7.5. The DSC measurements clearly demonstrated that PCEU indeed possesses the more flexible chain motion ability than PHEU. The electrochemical stability window of PCEU, which is 1.7–4.0 V was measured by cyclic voltammogram. Additionally, the significantly high decomposition temperature as evidenced by TGA analyses endowed these SPEs a good safe performance. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Hybrid solid polymer electrolytes (HSPE) of high ionic conductivity were prepared using polyethylene oxide (PEO), polyacrylonitrile (PAN), propylene carbonate (PrC), ethylene carbonate (EC), and LiClO4. These electrolyte films were dry, free standing, and dimensionally stable. The HSPE films were characterized by constructing symmetrical cells containing nonblocking lithium electrodes as well as blocking stainless steel electrodes. Studies were made on ionic conductivity, electrochemical reaction, interfacial stability, and morphology of the films using alternating current impedance spectroscopy, infrared spectroscopy, and scanning electron microscopy. The properties of HSPE were compared with the films prepared using (i) PEO, PrC, and LiClO4; and (ii) PAN, PrC, EC, and LiClO4. The specific conductivity of the HSPE films was marginally less. Nevertheless, the dimensional stability was much superior. The interfacial stability of lithium was similar in the three electrolyte films. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 2191–2199, 1997  相似文献   

5.
Polymer electrolyte based lithium ion batteries represent a revolution in the battery community due to their intrinsic enhanced safety, and as a result polymer electrolytes have been proposed as a replacement for conventional liquid electrolytes. Herein, the preparation of a family of crosslinked network polymers as electrolytes via the ‘click‐chemistry’ technique involving thiol‐ene or thiol‐epoxy is reported. These network polymer electrolytes comprise bifunctional poly(ethylene glycol) as the lithium ion solvating polymer, pentaerythritol tetrakis (3‐mercaptopropionate) as the crosslinker and lithium bis(trifluoromethane)sulfonimide as the lithium salt. The crosslinked network polymer electrolytes obtained show low Tg, high ionic conductivity and a good lithium ion transference number (ca 0.56). In addition, the membrane demonstrated sterling mechanical robustness and high thermal stability. The advantages of the network polymer electrolytes in this study are their harmonious characteristics as solid electrolytes and the potential adaptability to improve performance by combining with inorganic fillers, ionic liquids or other materials. In addition, the simple formation of the network structures without high temperatures or light irradiation has enabled the practical large‐area fabrication and in situ fabrication on cathode electrodes. As a preliminary study, the prepared crosslinked network polymer materials were used as solid electrolytes in the elaboration of all‐solid‐state lithium metal battery prototypes with moderate charge–discharge profiles at different current densities leaving a good platform for further improvement. © 2018 Society of Chemical Industry  相似文献   

6.
Like a liquid solvent, poly(ethylene oxide) dissolves a wide variety of inorganic salts. Ionic conductivity occurs in the amorphous region of the polymer and typically both anions and cations are mobile to some extent. This paper discusses the preparation, thermal behaviour and ionic transport of thin cast films of PEO-based electrolytes containing monovalent and divalent cations. The techniques that shed light on the structure-conductivity relationship are emphasized. The temperature and composition dependence of conductivity is also considered. Finally, attention has been paid to the possible uses of these polymeric electrolytes in solid-state electrochemical devices such as primary and secondary batteries, electrochromic displays and sensors.  相似文献   

7.
超支化大分子的最新应用进展   总被引:7,自引:0,他引:7  
万涛  王跃川 《弹性体》2004,14(4):57-61
超支化大分子独特的构筑使其合成与应用在世界范围内受到人们越来越多的关注。笔者对最近以来国内外超支化大分子的最新应用进行了简要的综述,对今后超支化大分子的应用前景进行了展望和预测。  相似文献   

8.
In this work, electrical characteristics of several polymer electrolytes based on polyether and polyphosphazene blends are reported by means of complex impedance spectroscopy. In addition, a statistical analysis was conducted applying a mathematical model to a previously designed pattern to the purpose of gaining insight into the effect exerted on the conductivity of the electrolyte by the portion of each component in the blend. Evidence was obtained to prove that the dependence of conductivity on blend composition adjusts to a reduced cubic model, whose regression coefficients are determined in this work. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 2181–2186, 1998  相似文献   

9.
Gel polymer electrolytes (GPE) were prepared by a crosslinking reaction between poly(ethylene glycol) and a crosslinking agent with three isocyanate groups in the presence of propylene carbonate (PC) and ethylene carbonate (EC) or their mixture, and their ionic conducting behavior was carefully investigated. When the plasticizer amount was fixed, the ionic conductivity was greatly influenced by the nature of plasticizers. It was found that the conductivity data followed the Arrhenius equation in the GPE. Whatever plasticizer was used, a maximum ambient conductivity was found at a salt concentration near [Li+]/[EO] equal to 0.20. The physical stability of GPE was studied qualitatively by weight loss of GPE under pressure. It was shown that the stability was greatly affected by the network structure of the GPE and the most stable one in our research was the GPE containing the PEO1000 segment, which has a strong interaction between network and plasticizers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2957–2962, 2000  相似文献   

10.
High-molecular-weight copolymers were prepared consisting predominantly of oxyethylene and oxymethylene-oligo(oxyethylene) blocks with a small 1-phenylethylene block. Ionic conductivities of mixtures of the copolymers with CF3SO3Li were measured.  相似文献   

11.
Wanyu Chen 《Electrochimica acta》2008,53(13):4414-4419
An ionic complex of anionic and cationic monomers was obtained by protonation of (N,N-diethylamino)ethylmethacrylate with acrylic acid. A novel ionically crosslinked polyampholytic gel electrolyte was prepared through the free radical copolymerization of the ionic complex and acrylamide in a solvent mixture of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate (1:1:1, v/v) containing 1 mol/L of LiPF6. The impedance analysis indicated that the ionic conductivity of the polyampholytic gel electrolyte was rather close to that of solution electrolytes in the absence of a polymer at the same temperature. The temperature dependence of the conductivity was found to be well in accord with the Arrhenius behavior. The formation processes of the solid electrolyte interphase (SEI) formed in both gel and solution electrolytes during the cycles of charge-discharge were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The cyclic voltammetry curves show a strong peak at a potential of 0.68 V and an increase of the interfacial resistance from 17.2 Ω to 35.8 Ω after the first cycle of charge-discharge. The results indicate that the formation process of SEI formed in both gel and solution electrolytes was similar which could effectively prevent the organic electrolyte from further decomposition and inserting into the graphite electrode. The morphologies of SEI formed in both gel and solution electrolytes were analyzed by field emission scanning electron microscopy. The results indicate that the SEI formed in the gel electrolyte showed a rough surface consisting of smaller solid depositions. Moreover, the SEI formed in the gel electrolyte became more compact and thicker as the cycling increased.  相似文献   

12.
介绍了水性聚氨酯导电材料导电的原理、水性聚氨酯导电材料制备方法,讨论了硬段、软段、复合溶剂等影响水性聚氨酯导电性能的因素,综述了水性聚氨酯在导电材料方面的应用研究最新进展,同时对这种新型材料进行了展望。  相似文献   

13.
A series of crosslinked polymer electrolyte membranes with controlled structures were prepared based on poly(styrene‐b‐butadiene‐b‐styrene) (SBS) triblock copolymer and a sulfonated monomer, 2‐sulfoethyl methacrylate (SEMA). SBS membranes were thermally crosslinked with SEMA in the presence of a thermal‐initiator, 4,4′‐azobis(4‐cyanovaleric acid) (ACVA), as confirmed by FT‐IR spectroscopy. The water uptake and ion exchange capacity (IEC) of membranes increased almost linearly with SEMA concentrations due to the increase of SO groups. However, the proton conductivity of membranes increased linearly up to 33 wt % of SEMA, above which it abruptly jumped to 0.04 S/cm presumably due to the formation of well‐developed proton channels. Microphase‐separated morphology and amorphous structures of crosslinked SBS/SEMA membranes were observed using wide angle X‐ray scattering (WAXS), small angle X‐ray scattering (SAXS), and transmission electron microscopy (TEM). The membranes exhibited good mechanical properties and high thermal stability up to 250°C, as determined by a universal testing machine (UTM) and thermal gravimetric analysis (TGA), respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
The lithium‐ion conducting gel polymer electrolytes (GPE), PVAc‐DMF‐LiClO4 of various compositions have been prepared by solution casting technique. 1H NMR results reveal the existence of DMF in the gel polymer electrolytes at ambient temperature. Structure and surface morphology characterization have been studied by X‐ray diffraction analysis (XRD) and scanning electron microscopy (SEM) measurements. Thermal and conductivity behavior of polymer‐ and plasticizer‐salt complexes have been studied by differential scanning calorimetry (DSC), TG/DTA, and impedance spectroscopy results. XRD and SEM analyses indicate the amorphous nature of the gel polymer‐salt complex. DSC measurements show a decrease in Tg with the increase in DMF concentrations. The thermal stability of the PVAc : DMF : LiClO4 gel polymer electrolytes has been found to be in the range of (30–60°C). The dc conductivity of gel polymer electrolytes, obtained from impedance spectra, has been found to vary between 7.6 × 10?7 and 4.1 × 10?4 S cm?1 at 303 K depending on the concentration of DMF (10–20 wt %) in the polymer electrolytes. The temperature dependence of conductivity of the polymer electrolyte complexes appears to obey the VTF behavior. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
A series of Latex AB crosslinked polymers have been synthesized from polyurethane (PU) (polymer A) and polystyrene (PS) (polymer B). The effect of PU/PS composition, crosslinking density in the PS domain, as well as in PU has been studied in terms of dispersion size, TEM morphology, mechanical, dynamic mechanical properties, in addition to swellability in water and toluene of the dispersion cast film. An inverted core (PS)‐shell (PU) morphology with very fine (tens of nanometers) dispersion was obtained, and the film properties were well controlled by the Latex composition and crosslinking density of both phases. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1315–1322, 2001  相似文献   

16.
We developed an ionic conductivity model of solid polymer electrolytes for dye‐sensitized solar cells (DSSCs) based on the Nernst–Einstein equation in which the diffusion coefficient is derived from the molecular thermodynamic model. We introduced concentration‐dependence of the diffusion coefficient into the model, and the diffusion coefficient was expressed by differentiating the chemical potential by concentration. The ionic conductivities of polymer electrolytes (PEO/LiI/I2 system) were investigated at various temperatures and compositions. We prepared a set of PEO in which an EO : LiI mole ratio of 10 : 1 was kept constant for PEO·LiI·(I2)n compositions with n = 0.02, 0.05, 0.1, 0.15, 0.2, and 0.3 (mole ratio of LiI : I2). The ionic conductivities of the electrolytes were measured using a stainless steel/polymer‐electrolyte/stainless steel sandwich‐type electrode structure using alternating current impedance analysis. The values calculated using the proposed model agree well with experimental data. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
To develop a highly ion‐conductive polymer electrolyte, we copolymerized methacrylonitrile (MAN) with ethylene glycol dimethacrylate (EGDMA) in propylene carbonate that contained tetraethylammonium tetrafluoroborate (TEATFB), changing the TEATFB concentration and the MAN/EGDMA molar ratio. We characterized the obtained polymer gel electrolytes with complex impedance analysis and cyclic voltammetry, intending to apply them to electric double‐layer capacitors. The ionic conductivities of the polymer gel electrolytes were dependent on the TEATFB concentration, the temperature, and particularly the crosslinking degree. The polymer gel electrolytes in this system exhibited high room‐temperature conductivities (>10?3 S/cm). Furthermore, these polymer electrolytes showed good electrochemical stability windows ranging from ?4.0 to +4.0 V versus Ag. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2655–2659, 2002  相似文献   

18.
Gel polymer electrolyte (GPE) was prepared using polyurethane acrylate as polymer host and its performance was evaluated. LiCoO2/GPE/graphite cells were prepared and their electrochemical performance as a function of discharge currents and temperatures was evaluated. The precursor containing a 5 vol % curable mixture had a viscosity of 4.5 mPa s. The ionic conductivity of the GPE at 20 °C was about 4.5 × 10–3 S cm–1. The GPE was stable electrochemically up to a potential of 4.8 V vs Li/Li+. LiCoO2/GPE/graphite cells showed a good high rate and low-temperature performance. The discharge capacity of the cell was stable with charge–discharge cycling.  相似文献   

19.
An ionic liquid 1‐methyl‐3‐[2‐(methacryloyloxy)ethyl]imidazolium bis(trifluoromethane sulfonylimide) (MMEIm‐TFSI) was synthesized and polymerized. Composite polymer electrolytes based on polymeric MMEIm‐TFSI (PMMEIm‐TFSI) and poly[(methyl methacrylate)‐co‐(vinyl acetate)] (P(MMA‐VAc)) were prepared, with lithium bis(trifluoromethane sulfonylimide) (LiTFSI) as target ions (Li+). DSC/TGA analysis showed good flexibility and thermal stability of the composite electrolyte membranes. The AC impedance showed that the ionic conductivity of the electrolytes increased with PMMEIm‐TFSI up to a maximum value of 1.78 × 10?4 S cm?1 when the composition was 25 wt% P(MMA‐VAc)/75 wt% PMMEIm‐TFSI/30 wt% LiTFSI at 30 °C. The composite electrolyte membrane (transmittance ≥ 90%) can also be used as the ion‐conductive layer material for electrochromic devices, and revealed excellent colorization performance. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
Quaternary plasticized solid polymer electrolyte (SPE) films composed of poly(ethylene oxide), LiClO4, Li1.3Al0.3Ti1.7(PO4)3, and either ethylene carbonate or propylene carbonate as plasticizer (over a range of 10–40 wt%) were prepared by a solution‐cast technique. X‐ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) indicated that components such as LiClO4 and Li1.3Al0.3Ti1.7(PO4)3 and the plasticizers exerted important effects on the plasticized quaternary SPE systems. XRD analysis revealed the influence from each component on the crystalline phase. DSC results demonstrated the greater flexibility of the polymer chains, which favored ionic conduction. SEM examination revealed the smooth and homogeneous surface morphology of the plasticized polymer electrolyte films. EIS suggested that the temperature dependence of the films' ionic conductivity obeyed the Vogel–Tamman–Fulcher (VTF) relation, and that the segmental movement of the polymer chains was closely related to ionic conduction with increasing temperature. The pre‐exponential factor and pseudo activation energy both increased with increasing plasticizer content and were maximized at 40 wt% plasticizer content. The charge transport in all polymer electrolyte films was predominantly reliant on lithium ions. All transference numbers were less than 0.5. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号