首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystalline poly(ethylene‐co‐vinyl alcohol) (EVOH) membranes were prepared by a thermally induced phase separation (TIPS) process. The diluents used were 1,3‐propanediol and 1,3‐butanediol. The dynamic crystallization temperature was determined by DSC measurement. No structure was detected by an optical microscope in the temperature region higher than the crystallization temperature. This means that porous membrane structures were formed by solid–liquid phase separation (polymer crystallization) rather than by liquid–liquid phase separation. The EVOH/butanediol system showed a higher dynamic crystallization temperature and equilibrium melting temperature than those of the EVOH/propanediol system. SEM observation showed that the sizes of the crystalline particles in the membranes depended on the polymer concentration, cooling rate, and kinds of diluents. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2449–2455, 2001  相似文献   

2.
Poly(ethylene-co-vinyl alcohol) (EVOH) hollow fiber membranes with ultrafiltration performance were prepared from EVOH/glycerol systems via thermally induced phase separation (TIPS). The diluent glycerol was used as bore liquid to make a lumen of the hollow fiber for the purpose of prevention of the diluent evaporation and the larger pores formation at the inner surface of the hollow fiber. The obtained hollow fiber membranes showed asymmetric structures with skin layer near the outer surface, the larger pores just below the skin layer and the smaller pores near the inner surface. The formation of the larger pores near the outer surface was due to the enhanced pore growth by the water penetration. Some primary factors affecting the structure and performance of the membranes such as ethylene content (EC) in EVOH, cooling water bath temperature and take-up speed were studied extensively. The water permeability can be improved by increasing the water bath temperature and the take-up speed and by decreasing the EC. Both the pore size at the outer surface and the connectivity between the pores have to be considered together to understand the experimental result of the water permeability and the solute rejection.  相似文献   

3.
The binary interaction model was introduced to estimate phase diagrams of copolymer‐diluent systems in thermally induced phase separation. The crystallization curves and cloud points of poly(ethylene‐co‐vinyl alcohol) (EVOH) with 1,4‐butanediol, EVOH/1,3‐propanediol, and EVOH/glycerol were calculated and compared with experimental value or literature data. Fair agreement was obtained. To confirm the importance of incorporating intramolecular interactions, calculations with and without the consideration of intramolecular interactions were performed and compared. It was found that better results can be obtained if intramolecular interaction was introduced. The reason for the small differences between the calculated value and the experimental data of the liquid–liquid phase separation is discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

4.
Ethylene‐vinyl alcohol copolymers (EVOH) were prepared by the conventional saponification of poly(ethylene‐co‐vinyl acetate) using a solution of potassium hydroxide in ethanol. An organic fungicide, consisting of a 2‐benzimidazole carbamoyl (CBZ) group supported on EVOH (EVOH‐CBZ), was prepared by the transesterification reaction of methyl 2‐benzimidazole cabamate (carbendazim) with EVOH. The antifungal activity of the synthesized polymers was examined by the halo zone test against Aspergillus fumigatus and Penicillium pinophilum. The synthesized EVOH‐CBZ complex showed a strong antifungal activity. The bound CBZ units were susceptible to hydrolysis. CBZ bonded to an epoxy resin precursor, diglycidyl ether of bisphenol A (DGEBA‐CBZ), retained its antifungal activity, which was somewhat weaker in comparison with that of EVOH‐CBZ. When the DGEBA‐CBZ complex was crosslinked by isophoronediamine, the antifungal activity disappeared almost completely, indicating that it is necessary for the CBZ units to release from their polymer supports to have the antifungal effects. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 728–736, 2001  相似文献   

5.
Porous poly(ethylene-co-vinyl alcohol) (EVOH) membranes were prepared via thermally induced phase separation. The effect of the EVOH ethylene content on the membrane morphology and solute rejection property was investigated. For EVOHs with ethylene contents of 27–44 mol %, polymer crystallization (solid–liquid phase separation) occurred, and the membrane morphology was the particulate structure. However, the liquid–liquid phase separation occurred before crystallization for EVOH with a 60 mol % ethylene content. Cellular pores were formed in this membrane. For the particulate membranes, higher solute rejection and lower water permeance were obtained for EVOH with a lower ethylene content. The membrane formed by the liquid–liquid phase separation showed a sharper solute rejection change with a change in the solute radius than the particulate membranes did. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2583–2589, 2001  相似文献   

6.
Poly(L ‐lactic acid) (PLLA) was blended with poly(ethylene‐co‐vinyl alcohol) (EVOH) in the presence of an esterification catalyst to induce reaction between the hydroxyl groups of EVOH and the terminal carboxylic group of PLLA. Nascent low‐molecular‐weight PLLA, obtained from a direct condensation polymerization of L ‐lactic acid in bulk state, was used for the blending. Domain size of the PLLA phase in the graft copolymer was much smaller than that corresponding to a PLLA/EVOH simple blend. The mechanical properties of the graft copolymer were far superior to those of the simple blend, and the graft copolymer exhibited excellent mechanical properties even though the biodegradable fraction substantially exceeded the percolation level. The grafted PLLA reduced the crystallization rate of the EVOH moiety. Melting peak temperature (Tm) of the PLLA phase was not observed until the content of PLLA in the graft reaction medium went over 60 wt %. The modified Sturm test results demonstrated that biodegradation of EVOH‐g‐PLLA took place more slowly than that of an EVOH/PLLA simple blend, indicating that the chemically bound PLLA moiety was less susceptible to microbial attack than PLLA in the simple blend. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 886–890, 2005  相似文献   

7.
The morphology and bulk properties of microporous membranes based on poly (ether ether ketone) (PEEK) have been investigated as a function of initial casting composition and thermal and mechanical processing history. Membranes were prepared via solid—liquid phase separation of miscible blends of PEEK and polyetherimide (PEI), with subsequent extraction of the PEI diluent. Scanning electron microscopy studies revealed a microporous morphology with two distinct pore size scales corresponding to diluent extraction from interfibrillar and interspherulitic regions, respectively. The membrane structure was sensitive to both initial blend composition and crystallization temperature, with the resulting pore size distribution reflecting the kinetics of phase separation. For membranes prepared with lower initial diluent content or at lower crystallization temperatures, mercury intrusion porosimetry indicated a relatively narrow distribution of fine interfibrillar pores, with an average pore size of approximately 0.04 microns. Membranes prepared at higher diluent content or at higher crystallization temperatures displayed a broad pore distribution, with a sizeable population of coarse, interspherulitic pores (0.1 to 1 μm in size). Uniaxial drawing led to a fibrillated network structure with markedly higher water flux characteristics compared to the as-cast membranes. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 2347–2355, 1997  相似文献   

8.
In this report we outline recent work on the evaluation of magnesium carbonate‐based flame retardants for polymers commonly used in halogen‐free flame retardant wire and cable applications: poly(ethylene‐co‐vinyl acetate) (EVA) and poly(ethylene‐co‐ethyl acrylate) (EEA). Natural magnesium carbonate (magnesite), synthetic magnesium carbonate (hydromagnesite), and hydromagnesite/huntite blends were combined with EVA or EEA and tested for flame retardancy effectiveness with the cone calorimeter. The flammability results showed that the effectiveness of these carbonates was polymer dependent, suggesting that polymer degradation chemistry played a role in the flammability reduction mechanism. Hydromagnesites were, in general, more effective in reducing flammability, being comparable in performance to magnesium hydroxide. Finally, we report some polymer–clay (organically treated montmorillonite and magadiite) + magnesium carbonate flame retardant results which showed that the nanocomposite yielded mixed results. Specifically, the polymer–clay nanocomposite samples did not always yield the greatest reductions in peak heat release rate. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Poly(ethylene‐co‐vinyl alcohol) hollow‐fiber membranes with a 44 mol % ethylene content were prepared by thermally induced phase separation. A mixture of 1,3‐propanediol and glycerol was used as the diluent. The effects of the ratio of 1,3‐propanediol to glycerol in the diluent mixture on the phase diagram, membrane structure, and membrane performance were investigated. As the ratio increased, the cloud point shifted to lower temperatures, and the membrane structure changed from a cellular structure due to liquid–liquid phase separation to a particulate structure due to polymer crystallization. Better pore connectivity was obtained in the hollow‐fiber membrane when the ratio of 1,3‐propanediol to glycerol was 50:50, and the membrane showed about 100 times higher water permeability than the membrane prepared with pure glycerol. For the prepared hollow‐fiber membrane, the solute 20 nm in diameter was almost rejected. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 219–225, 2005  相似文献   

10.
The effect of diluents on polymer crystallization and membrane morphology via thermally induced phase separation(TIPS) were studied by changing the composition of the mixed‐diluents systematically, in the system of poly(4‐methyl‐1‐pentene) (TPX)/dibutyl‐phthalate (DBP)/di‐n‐octyl‐phthalate (D‐n‐OP) with TPX concentration of 30 wt %. The TPX crystallization was observed with differential scanning calorimetry (DSC) and wide angle X‐ray diffraction (WAXD). The membranes were characterized with scanning electron microscopy (SEM), porosity, and pore size measurement. As the content of D‐n‐OP increased in mixed‐diluents, the solubility with TPX increased, inducing the phase separation changing from liquid–liquid phase separation into solid–liquid phase separation, which changed the membrane morphology and structure. When the ratios of DBP to D‐n‐OP were 10 : 0, 7 : 3; 5 : 5, and 3 : 7, membranes were formed with cellular structure and well connected pores, while the ratio was 0 : 10, discernable spherulities were found with not well‐formed pore structure. The effect of composition of the mixed‐diluents on membrane morphology was more remarkable in TPX/dioctyl‐sebacate (DOS)/dimethyl‐phthalate (DMP) system, since good cellular structure was formed when the ratios of DOS to DMP were 10 : 0, 7 : 3, while spherulites were observed when 5 : 5. Dual endotherm peaks behavior on DSC melting curves emerged for all the samples in this study, which was attributed to the special polymer crystallization behavior, primary crystallization, and secondary crystallization occurred when quenching the samples. As the content of D‐n‐OP increased, the secondary crystallization enhanced which induced the first endotherm peak on DSC melting curves moving to a lower temperature and the broadening of the overall melting peak, as well as the increasing of the overall crystallinity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
In a study of the surface morphology of commercial poly(vinyl acetate‐co‐vinyl alcohol) (ACA copolymer) with different percents of hydrolysis, different structures like fibrils, spherulites, micelles, vesicles, and spheroids were seen. The copolymer was crystallized by annealing at two different temperatures. The morphology of the polymer after crystallization and also without crystallization was studied. A decrease in the melting temperature just by heating to the melting temperature was observed, and for a detailed study, repetitive heating of the copolymer was carried out and changes in the mass and heat of fusion after every heating was recorded. The morphology of the copolymer after repetitive heating was studied. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1211–1218, 2002  相似文献   

12.
Hydrophilic poly(vinyl butyral) (PVB)/Pluronic F127 (F127) blend hollow fiber membranes were prepared via thermally induced phase separation (TIPS), and the effects of blend composition on the performance of hydrophilic PVB/F127 blend hollow fiber membrane were investigated. The addition of F127 to PVB/polyethylene glycol (PEG) system decreases the cloud point temperature, while the cloud point temperature increases slightly with the addition of F127 to 20% (by mass) PVB/F127/PEG200 system when the concentration of F127 is not higher than 5% (by mass). Light scattering results show that the initial inter-phase periodic distance formed from the phase separation of 20% (by mass) PVB/F127/PEG200 system decreases with the addition of F127, so does the growth rate during cooling process. The blend hollow fiber membrane prepared at air-gap 5mm, of which the water permeability increases and the rejection changes little with the increase of F127 concentration. For the membrane prepared at zero air-gap, both water permeability and rejection of the PVB/F127 blend membrane are greater than those of PVB membrane, while the tensile strength changes little. Elementary analysis shows that most F127 in the polymer solution can firmly exist in the polymer matrix, increasing the hydrophilicity of the blend membrane prepared at air-gap of 5mm.  相似文献   

13.
Rodlike samples were made from four kinds of poly(ethylene‐co‐vinyl alcohol) (EVAL) pellets with different ethylene contents. From these rodlike samples, fibers were produced using a melt‐electrospinning system equipped with a CO2‐laser melting device. The effects on the fiber diameter of the ethylene content and the moisture regain of the rodlike samples were investigated. Furthermore, the physical properties of the fibers were investigated. The following conclusions were reached: (i) EVAL fibers having an average fiber diameter smaller than 1 μm can be obtained using the system developed; (ii) the diameter of EVAL fiber is influenced by the ethylene content and the moisture regain of the starting rods; (iii) the laser heating does not greatly decrease the melting point and the molecular weight of EVAL; and (iv) preferred crystal orientation can be seen in electrospun EVAL fibers. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1368–1375, 2007  相似文献   

14.
Cellulose nanofibers are promising materials in the development of polymeric foams, because they act as heterogeneous nucleation sites for the growth of cells during foaming. In this research, we studied the incorporation of cellulose nanoparticles in poly(ethylene‐co‐vinyl acetate)‐EVA foams. The foams were produced with different fiber contents. We observed the effect of a chemical treatment by acetylation on the cellulose fibber, that is, we evaluated the use of hydrophilic and hydrophobic cellulose nanofibers in EVA foams. The main results indicate that with the addition of only 1% of cellulose nanofibers, cell density significantly reduces when compared with the pure EVA foams. On the other hand, by increasing the cellulose content, the agglomeration of nanofibers also increases, which results in heterogeneous cell sizes. The same phenomenon was observed in the foams produced with acetylated cellulose nanofibers, regardless of the fiber content used. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44760.  相似文献   

15.
Poly(vinyl alcohol) (PVA) grafted with poly(lactide‐co‐glycolide) and cross‐linked as a material of increased hydrophobicity relative to PVA was produced. The properties were examined with respect to the mass loss, water uptake, hydrophilicity, and mechanical characteristics upon hydrolytical degradation. The hydrogels investigated display water uptake increasing with degradation time because of increasing hydrophilicity. The mass loss amounts up to 15% after eight weeks of degradation. The mechanical properties of the hydrogels are within the range of those of natural tissue, the E modulus is 18 MPa, or even 100–200 MPa, depending on the structure of material. The mechanical characteristic and their dependence degradation show the most recognizable correlation with the chemical structure. Studies of the topography of degraded samples (scanning electron microscopy) and IR measurements demonstrate the degradation to occur at slow rate due to the high degree of grafting. The mass loss is rather low and a bulk degradation mechanism takes place. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
A technique has been examined for reducing the extent of crosslinking resulting from 1,1‐di(t‐butylperoxy)‐3,3,5‐trimethylcyclohexane (L‐231) initiating melt grafting of vinyltriethoxysilane (VTEOS) onto poly(ethylene‐co‐vinyl acetate) (EVA). Using measurements of crosslink density and VTEOS conversion, a standard of selectivity for the EVA/VTEOS/L‐231 system at 145 °C was defined and used to assess the influence of a range of additives (0.25 mol per mole VTEOS). The data indicated that compounds such as 4‐nonene, N,N‐dimethylaniline, and cumene improve reaction selectivity, whereas dodecane and cyclohexyl acetate have no effect. A strong correlation between the minimum C? H bond dissociation energy and the influence of a given compound is evident, suggesting that a labile C? H bond is the key element of an effective additive. A mechanism of additive function on the basis of hydrogen atom donation is proposed. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2397–2402, 2002  相似文献   

17.
Porous membranes were prepared through the thermally induced phase separation of poly(ethylene‐co‐vinyl alcohol) (EVOH)/glycerol mixtures. The binodal temperature and dynamic crystallization temperature were determined by optical microscopy and differential scanning calorimetry measurements, respectively. It was determined experimentally that the liquid–liquid phase boundaries were shifted to higher temperatures when the ethylene content in EVOH increased. For EVOHs with ethylene contents of 32–44 mol %, liquid–liquid phase separation occurred before crystallization. Cellular pores were formed in these membranes. However, only polymer crystallization (solid–liquid phase separation) occurred for EVOH with a 27 mol % ethylene content, and the membrane morphology was the particulate structure. Scanning electron microscopy showed that the sizes of the cellular pores and crystalline particles in the membranes depended on the ethylene content in EVOH, the polymer concentration, and the cooling rate. Furthermore, the tendency of the pore and particle sizes was examined in terms of the solution thermodynamics of the binary mixture and the crystallization kinetics. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 853–860, 2003  相似文献   

18.
热致相分离(TIPS)法制备等规聚丙烯(iPP)中空纤维微孔膜,邻苯二甲酸二丁酯(DBP)与邻苯二甲酸二辛酯(DOP)的混合溶剂作为制膜稀释剂。干/湿氮气流量法测定了α(稀释剂中DBP的质量分数)和β(铸膜液中聚合物的质量分数)对膜样品的平均孔径及其分布的影响,并采用膜孔曲折因子定量表达膜孔连通性。发现全部膜样品均体现窄孔径分布特征。对于相同的β, α增加导致平均孔径及膜孔连通性下降。α=0.20时,β增加,膜的平均孔径先增加后降低,膜孔曲折因子稍下降; α=0.35或0.50时,β增加,膜的平均孔径降低,膜孔曲折因子下降。膜孔连通性体现了膜内部的拓扑结构,共溶剂组成和铸膜液固含量能够调节iPP中空纤维微孔膜的孔径及其连通性。  相似文献   

19.
The effects of a mixed diluent (MD) composition [dibutyl phthalate/dioctyl phthalate (DOP)] on poly (vinylidene fluoride) (PVDF) membrane morphology were investigated with scanning electron microscopy, and a bicontinuous morphology could be obtained with MD in a thermally induced phase‐separation process. The reasons for the morphology formation were explained according to the effect of MD on the phase diagrams. In addition, the effects of the PVDF concentration on the membrane morphology were examined. For the system with less DOP, the large spherulite morphology was obvious under all investigated concentrations, whereas no large spherulite structure existed in the membrane as the DOP content increased to concentrations other than 20%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
EVA was blended with phenoxy over the whole range of composition using a twin‐screw Brabender. Two‐phase separation caused by EVA crystallization was observed in the EVA‐rich blends and the dispersed domain of EVA was not clearly shown in the phenoxy‐rich blends. Differential scanning calorimetry (DSC) showed that the glass transition temperature (Tg) of EVA was increased by 5–10°C in the EVA‐rich blends but the Tg of phenoxy was superposed over the melting behavior of EVA. X‐ray diffraction measurement indicated that EVA crystallization was restricted in the phenoxy‐rich blends and the EVA crystal structure was influenced by incorporation of phenoxy into the EVA‐rich blends. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 227–236, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号