共查询到19条相似文献,搜索用时 109 毫秒
1.
各类分布式设备和智能设备接入电力系统,使得电力系统对电能的波动越来越敏感,这导致对电能质量扰动(PQD)的识别和处理变得越来越重要。通过将分段改进S变换(SMST)和随机森林(RF)算法相结合,提出了一种用于复杂噪声环境下PQD识别的新方法。首先,基于检测误差和峰度对SMST的不同频段进行分别调参,并使用SMST提取待检测信号的75种时频特征,构成原始特征集。然后,改进分类回归树(CART)的节点分裂过程,加入了离散值处理策略并使用Gini指数的下降作为新的节点分裂规则。同时,在下次节点分裂前,将基尼指数下降值为零的特征从特征集中删除。最后,使用改进的CART算法构建了RF分类器并对复合PQD信号进行分类。实验证明,在不同的信噪比条件下,新方法均能有效识别多数单一PQD信号和常见的双重复合PQD信号。虽然新方法在运行效率方面仍有一定的改进空间,但其在不同层面上的改进均能有效提升PQD识别精度,且平均分类精度明显高于各类传统PQD识别方法。 相似文献
2.
3.
基于改进S变换的电能质量扰动分类 总被引:3,自引:0,他引:3
电能质量扰动信号的分类识别对建立电能质量综合评估体系、选择合理的电能质量治理方案,确保电力系统安全稳定运行和用户的合法用电权益具有重要意义。提出了一种基于改进S变换时频模矩阵的电能质量短时扰动分类新方法。该方法首先根据信号的稳态主导频率确定S变换高斯窗的衰减速度,计算所得时频模矩阵作为各电能质量扰动信号的标准模板;通过比较测试信号改进S变换模矩阵的特定频段与各标准模板之间的相似度,实现扰动分类。在相似度的比较过程中,为了凸显异类模板之间的差别,尤其是电压暂降和暂升、电压缺口和尖峰,提出了能量归一化概念以及分频逐行计算相似度的思想,实现异类模板差异最大化。该方法能够充分挖掘各类扰动信号之间的特征差异,通过简单的相似度比较对扰动进行分类,无需添加辅助分类器。仿真和实测数据的分析表明,该方法分类过程简单,可信度高,抗干扰能力强。 相似文献
4.
基于S变换的电能质量扰动支持向量机分类识别 总被引:64,自引:7,他引:64
采用s变换和支持向量机进行电能质量扰动的分类识别。作为连续小波变换和短时傅立叶变换的发展,S变换引入了宽度与频率成反向变化的高斯窗,具有与频率相关的分辨率。由于S变换具有良好的时频特性,因而非常适合于进行电能质量扰动信号特征提取。首先通过S变换进行扰动信号特征提取,然后构造支持向量机分类树进行扰动分类。算例表明该方案具有分类准确率高,对噪声不敏感,训练样本少等优点,是电能质量扰动识别的有效方法。 相似文献
5.
针对电能质量扰动信号检测和定位问题,提出一种基于广义S变换的动态电能质量的识别方法.首先推导广义S变换的离散公式,并把典型扰动变换到相空间中,从不同角度提取扰动相空间中的特征量,判断扰动高频奇异点,对所得的结果进行分析并与S变换进行比较.结果表明,广义S变换比标准S变换更具有灵活的时频聚焦性.不仅能有效地检测到电压幅值的瞬时变化,而且能准确判断频率的变化,特别是高次分量.此外,在间谐波和相位检测方面效果良好. 相似文献
6.
针对目前复合电能质量扰动(PQD)信号特征冗余,分类识别准确率低的问题,提出了一种基于S变换和改进鲸鱼算法支持向量机(IWOA-SVM)的复合电能质量扰动识别方法。首先,利用S变换对7种单一电能质量扰动和生成的13种复合扰动信号进行时频分析,使复杂扰动信号的特征得以凸显。设计特征提取方法,从实频矩阵中尽可能地获取便于分类的信号特征信息;其次,引入自适应权重因子和随机差分变异策略对WOA进行优化,提升其搜索能力;最后建立IWOA-SVM分类预测模型,优化SVM高斯核函数参数,以获得更好的鲁棒性和泛化能力,对提取的特征样本进行自动分类和识别。实验结果表明,所提方法分类识别准确率高,能有效识别多种复合PQD信号,有助于评估与治理电能质量问题。 相似文献
7.
8.
9.
提出了一种复合电能质量扰动识别方法。为避免复合电能质量扰动类型中单一扰动相互影响而造成的特征混叠或失效问题,采用FFT变换结合动态测度法提取6个特征和S变换提取5个特征,从基频、中频、高频、基频标准差、频谱极值点对称等各个方面刻画扰动信号的特征;然后构建基于规则基“IF—THEN”形式的分类器,提取的特征输入分类器后能自动识别电能质量扰动类型。仿真结果表明,在一定噪声条件下,所提出的分类方法能准确识别26种扰动类型,其中包含8种单一扰动类型以及18种双重扰动类型。 相似文献
10.
电能质量扰动信号识别是电能质量扰动参数分析、扰动源定位和综合治理的前提。针对S变换在电能质量扰动信号分析中特征表现能力不足,以及极限学习机随机设置输入权值和隐藏层阈值造成识别准确率低的问题,提出一种基于广义S变换(generalized S-transform,GST)和粒子群(particle swarm optimization,PSO)优化极限学习机(extreme learning machine,ELM)的电能质量扰动信号识别新方法。首先,将粗调、微调和精调因子引入S变换的高斯窗函数中,并根据扰动信号的频率特点调整各因子值,从而获得更具针对性的时-频分辨率,以增强特征表现能力。其次,利用PSO的寻优能力,获取最大适应度时对应的输入权值和隐藏层阈值,提升ELM的识别准确率。最后,根据GST时-频模矩阵生成特征集,对PSO-ELM进行训练并测试其识别能力。对比实验表明,相较于S变换和ELM方法,本文提出方法识别准确率更高、抗噪性更强,能够满足工业环境下的电能质量扰动信号识别需要。 相似文献
11.
基于广义S变换的短时电能质量扰动信号分类 总被引:2,自引:2,他引:2
提出一种基于广义S变换的短时电能质量扰动信号分类方法。首先对短时电能质量扰动信号进行广义S变换,得到模矩阵,再从模时频矩阵中提取5种统计量特征值,然后利用决策树对扰动信号进行归类,从而实现对短时电能质量扰动信号的自动分类。仿真结果表明,该方法识别正确率高,且对噪声不敏感,适用于实际电网电能质量扰动信号的分析。 相似文献
12.
13.
基于S变换和最小二乘支持向量机的电能质量扰动识别 总被引:2,自引:0,他引:2
采用S变换和最小二乘支持向量机相结合,构建了一种电能质量扰动识别的新方法.首先利用S变换对电能质量扰动信号进行时频分解;然后,从扰动信号S变换的结果中,提取扰动信号的特征向量,组成训练样本和测试样本;最后,使用最小输出编码的最小二乘支持向量机对扰动信号进行训练,实现电能质量扰动信号自动分类和识别.仿真结果表明,该方法识别准确率高,抗噪能力强,且训练时间很短,适用于电能质量扰动辨识系统. 相似文献
14.
15.
16.
基于S变换模矩阵的电能质量扰动信号检测与定位 总被引:8,自引:0,他引:8
针对电能质量扰动信号的检测和定位问题,提出了一种基于S模矩阵幅值平方和均值的扰动定位算法,并对常见的几种扰动信号进行S变换仿真,应用S模矩阵幅值平方和均值定位扰动发生时间和持续时间,分析谐波成分等.仿真结果表明,所提算法简洁有效,能够准确分析谐波成分和定位扰动信号,可以估计电压暂降、电压暂升以及电压中断等扰动信号的变化幅度. 相似文献
17.
基于S变换和时域分析的电能质量扰动识别 总被引:6,自引:6,他引:6
提出了一种基于S变换(S-Transform,ST)和时域分析的电能质量扰动自动识别方法,该方法利用信号的S变换幅值矩阵和时域信息快速提取与各类电能质量扰动相应的特征,并借助简单的规则树识别特定的扰动,避免了因训练样本不足引起的较大误差,提高了识别效率。仿真试验结果表明,该方法识别率高,抗噪能力强,适用于电能质量扰动监测和辨识系统。 相似文献
18.
利用S变换与变尺度模板标准化的短时电能质量扰动分类 总被引:1,自引:0,他引:1
提出一种利用S变换与变尺度模板标准化的短时电能质量扰动分类方法。首先利用S变换对扰动信号进行时频分析;然后以最小二乘法选取最佳缩放尺度,通过变尺度方法标准化不同持续时间、幅值的扰动特征,在此基础上建立唯一的、时间尺度和频宽分辨率统一的各类扰动标准模板,作为识别扰动类型的直接判据;最后通过模板匹配的方法实现扰动分类。该方法不使用任何人工智能分类器,分类原理简单,过程明确,且可用于不同时间长度的扰动分类。Matlab仿真和实际试验结果显示,该方法能准确地对扰动进行分类且对噪声不敏感,是一种有效的短时电能质量扰动分类方法。 相似文献