首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The curing behavior of polydimethylsiloxane‐modified allylated novolac/4,4′‐bismaleimidodiphenylmethane resin (PDMS‐modified AN/BDM) was investigated by using Fourier transform infrared spectrometry (FTIR) and differential scanning calorimetry. The results of FTIR confirmed that the curing reactions of the PDMS‐modified AN/BDM resins, including “Ene” reaction and Diels–Alder reaction between allyl groups and maleimide groups, should be similar to those of the parent allylated novolac/4,4′‐bismaleimidodiphenylmethane (AN/BDM) resin. The results of dynamic DSC showed that the total curing enthalpy of the PDMS‐modified AN/BDM resins was lower than that of the parent resin. Incorporation of polydimethylsiloxane (PDMS) into the backbone of the allylated novolac (AN) resin favored the Claisen rearrangement reaction of allyl groups. The isothermal DSC method was used to study the kinetics of the curing process. The experimental data for the parent AN/BDM resin and the PDMS‐modified AN/BDM resins exhibited an nth‐order behavior. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
为了提高环氧树脂的耐热性,采用笼型倍半硅氧烷(POSS)改性双酚A型环氧树脂E51,得到有机无机杂化树脂。采用Ozawa和Kissinger两种方法研究了杂化树脂/4,4′-二氨基苯砜(DDS)体系的固化反应动力学。TGA分析表明,POSS的加入提高了E51/DDS固化树脂体系的热性能。  相似文献   

3.
Octa(maleimidophenyl)silsesquioxane (OMPS) was synthesized, characterized, and employed to modify the BT resin which composed of 4,4′‐bismaleimidodiphenylmethane (BMI) and 2,2′‐bis(4‐cyanatophenyl)propane (BCE). The curing reaction between OMPS and BT resin was first investigated. It was found that OMPS accelerate the curing reaction of BCE, and the onset temperature of the cyclotrimerization was reduced up to 95.5°C (by DSC). As demonstrated by DSC and FTIR, there was no evidence that indicated the coreaction between maleimide and cyanate ester. 2,2′‐diallyl bisphenol A (DBA) and diglycidyl ether of bisphenol A (E‐51) (Wuxi Resin Factory, Jiangsu Province, China) were also used to enhance the toughness of BT resin, and the formulated BTA (containing DBA) and BTE (containing E‐51) resins were obtained. The thermal properties of BT, BTA, and BTE resins incorporated with OMPS were then investigated. The results of DMA and TG showed that the BT, BTA, and BTE resins containing 1 wt % of OMPS exhibit enhanced thermal properties in comparison with their pristine resins respectively, while more contents of OMPS may impair the thermal properties of the polymer matrix, though the effect of OMPS was slight. Finally, the dielectric constant of these hybrid materials were detected, and their dielectric constant were distinctly reduced by the incorporation of OMPS, while overmuch contents of OMPS were disadvantageous for dielectric constant because of the aggregation of OMPS. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

4.
A series of epoxy resin (EP)/octa(aminpropyl)silsesquioxane (POSS‐NH2) organic–inorganic hybrid composites (EP/POSS‐NH2 100/0, 95/5, 90/10, and 80/20 wt/wt) were prepared by melt casting and then curing. Viscoelastic and mechanical properties of these composites were studied by dynamic mechanical analysis and mechanical testing, respectively. Scanning electron microscopy was used to study of the micromorphologies of the composites and to elucidate the toughening mechanisms of POSS‐NH2. POSS units incorporated into the epoxy network showed good compatibility with the resin matrix. Phase separation was not observed even at high POSS content (20 wt%). Incorporation of POSS macromer into the epoxy network after curing increased the glass transition temperature, slightly narrowed the temperature range widths of the glass transition, and lowered the intensities of their loss moduli peaks of the resultant composites. The glass transition temperature of EP/POSS‐NH2 composites increased significantly with increasing POSS content at lower POSS content (<10 wt%), while increased slightly at higher POSS content. Both impact and flexural strengths of the hybrids reached their optimum values when 10 wt% content of POSS was introduced. POLYM. COMPOS., 28:175–179, 2007. © 2007 Society of Plastics Engineers.  相似文献   

5.
A series of functional polyhedral oligomeric silsesquioxane (POSS)/polyimide (PI) nanocomposites were prepared using a two‐step approach. First, octa(aminophenyl)silsesquioxane (OAPS) was mixed with poly(amic acid) (PAA) prepared by reacting bis(4‐amino‐3,5‐dimethylphenyl)‐3‐quinolylmethane and 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride. Second, the resulting solution was subjected to thermal imidization. The well‐defined ‘hard particles’ (POSS) and the strong covalent bonds in the amide linkage between the carbon atom of the carboxyl side group in PAA and the nitrogen atom of the amino group in POSS lead to a significant improvement in the thermal and mechanical properties. Homogeneous dispersion of POSS cages in the PI is evident from scanning electron microscopy, which further confirms that the POSS molecule becomes an integral part of the organic‐inorganic inter‐crosslinked network system. Differential scanning calorimetry and dynamic mechanical analysis show that the glass transition temperatures of the POSS‐containing nanocomposites are higher than that of the corresponding neat PI system, owing to the significant increase of the crosslinking density in the PI/POSS nanocomposites. Increasing the concentration of OAPS in the PI networks decreases the dielectric constant. Pure PI and PI/POSS systems have good antimicrobial activity. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
In this article, a hybrid filler based on polyhedral oligomeric silsesquioxane and silica, coded as POSS‐SiO2, has been successfully synthesized. The structure of POSS‐SiO2 was studied by Fourier‐transform infrared spectra, X‐ray diffraction, and scanning electron microscopy. Then the POSS‐SiO2 was compounded with dicyclopentadiene bisphenol dicyanate ester (DCPDCE) resin to prepare composites. The effects of POSS‐SiO2 on the curing reaction, mechanical, thermal, dielectric and tribological properties of DCPDCE resin were investigated systematically. Results of differential scanning calorimetry show that the addition of POSS‐SiO2 can facilitate the curing reaction of DCPDCE and decrease the curing temperature of DCPDCE. Compared with pure DCPDCE resin, the impact and flexural strengths of the composites materials are improved markedly with up to 72 and 52% increasing magnitude, respectively. Meanwhile, the POSS‐SiO2/DCPDCE systems exhibit lower dielectric constant and loss than pure DCPDCE resin over the testing frequency from 10 to 60 MHz. In addition, the thermal stability and tribological properties of POSS‐SiO2/DCPDCE composites are also superior to that of pure DCPDCE resin. POLYM. COMPOS., 36:1840–1848, 2015. © 2014 Society of Plastics Engineers  相似文献   

7.
The thermal pressure coefficients of a neat, unfilled, epoxy resin and a 10 wt % POSS (polyhedral oligomeric silsesquioxane)‐filled epoxy nanocomposite have been measured using a thick‐walled tube method. It is found that just below the glass transition temperature the thermal pressure coefficient is ~ 20% smaller for the polymer composite containing 10% POSS than for the neat, unfilled resin. The thermal expansion coefficient and thermal pressure coefficient of the uncured POSS itself are also reported. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
《Polymer Composites》2017,38(5):827-836
3,13‐Diglycidyloxypropyloctaphenyl double‐decker silsesquioxane (3,13‐diglydidyl DDSQ) was synthesized via hydrosilylation between 3,13‐dihydrooctaphenyl double‐decker silsesquioxane (3,13‐dihydro DDSQ) and allyl glycidyl ether. This novel difunctional polyhedral oligomeric silsesquioxanes (POSS) macromer was incorporated into polybenzoxazine (PBZ) thermosets to obtain the organic–inorganic nanocomposites. Compared to control PBZ, the organic–inorganic nanocomposites displayed the enhanced glass transition temperatures (T g's). Under the identical condition, the organic–inorganic nanocomposites exhibited the stable rubbery plateaus in the measurements by dynamic mechanical thermal analysis, which was in marked contrast to control PBZ thermoset. The enhanced T g's and improved dynamic mechanical properties are attributable to the formation of the additional crosslinking between PBZ and the difunctional POSS macromer and the nanoreinforcement of POSS cages on PBZ networks. Thermogravimetric analysis indicates that the organic–inorganic nanocomposites displayed improved thermal stability. POLYM. COMPOS., 38:827–836, 2017. © 2015 Society of Plastics Engineers  相似文献   

9.
A series of cyanate ester resin (CE) based organic–inorganic hybrids containing different contents (0, 5, 10, 15 and 20 wt%) of epoxy‐functionalized polyhedral oligomeric silsesquioxane (POSS‐Ep) were prepared by casting and curing. The hybrid resin systems were studied by the gel time test to evaluate the effect of POSS‐Ep on the curing reactivity of CE. The impact and flexural strengths of the hybrids were investigated. The micromorphological, dynamic mechanical and thermal properties of the hybrids were studied by SEM, dynamic mechanical analysis (DMA) and TGA, respectively. Results showed that POSS‐Ep prolonged the gel time of CE. CE10 containing 10 wt% POSS‐Ep displayed not only the optimum impact strength but the optimum flexural strength. SEM results revealed that the improvement of mechanical properties was attributed to the large amount of tough whirls and fiber‐like pull‐outs observed on the fracture surfaces of CE10. DMA results indicated that POSS‐CE tended to decrease E′ of the hybrids in the glassy state but to increase E′ of the hybrids in the rubbery state. TGA results showed that CE10 also possesses the best thermal stability. The initial temperature of decomposition (Ti) of CE10 is 426 °C, 44 °C higher than that of pristine CE. © 2013 Society of Chemical Industry  相似文献   

10.
A series of novel poly[(butylene succinate)‐co‐diolisobutyl]‐[ polyhedral oligomeric silsesquioxane] (PBS‐POSS) copolyesters have been synthesized for the first time directly from diacid and diols via melting polycondensation. Both PBS and POSS segments crystallized as revealed by X‐ray diffraction, and the crystallization of PBS was found to be retarded by the incorporation of POSS into PBS chains based on differential scanning calorimetry and rheological results. Moreover, the copolyester containing 3 mol% POSS formed organogels in chloroform by the treatment of shear flow and was more thermally stable than the pristine sample, due to formation of a physically crosslinked network caused by the crystallization of POSS into crystals of larger sizes. © 2013 Society of Chemical Industry  相似文献   

11.
In this study, a novel approach to toughen biobased epoxy polymer with different types of siloxanes was explored. Three different modified siloxanes, e.g., amine‐terminated polydimethyl siloxane (PDMS‐amine), glycidyl‐terminated polydimethyl siloxane (PDMS‐glycidyl), and glycidyl‐terminated polyhedral oligomeric silsesquioxane (POSS‐glycidyl) were used as toughening agents. The curing and kinetics of bioepoxy was investigated by differential scanning calorimetry and Fourier transform infrared spectroscopy. The mechanical, thermal, and morphological properties of the cured materials were investigated. Rheological characterization revealed that the inclusion of POSS‐glycidyl slightly increased the complex viscosity compared to the neat resin. The morphology of the cured bioresin was characterized by transmission electron microscopy and scanning electron microscopy. The inclusion of POSS‐glycidyl to bioepoxy resin resulted in a good homogeneity within the blends. The inclusion of PDMS‐amine or PDMS‐glycidyl was shown to have no effect on tensile and flexural properties of the bioresins, but led to a deterioration in the impact strength. However, the inclusion of POSS‐glycidyl enhanced the impact strength and elongation at break of the bioresins. Dynamic mechanical analysis showed that the siloxane modified epoxy decreased the storage modulus of the bioresins. The thermal properties, such as decomposition temperature, coefficient of linear thermal expansion, and heat deflection temperature were improved by inclusion of POSS‐glycidyl. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42451.  相似文献   

12.
Poly(ε‐caprolactone)/clay nanocomposites were synthesized by in situ ring‐opening polymerization of ε‐caprolactone in the presence of montmorillonite modified by hydroxyl functionalized, quaternized polyhedral oligomeric silsesquioxane (POSS) surfactants. The octa(3‐chloropropyl) polyhedral oligomeric silsesquioxane was prepared by hydrolytic condensation of 3‐chloropropyltrimethoxysilane, which was subsequently quaternized with 2‐dimethylaminoethanol. Montmorillonite was modified with the quaternized surfactants by cation exchange reaction. Bulk polymerization of ε‐caprolactone was conducted at 110°C using stannous octoate as an initiator/catalyst. Nanocomposites were analyzed by X‐ray diffraction, transmission electron microscopy, thermo gravimetric analysis, and differential scanning calorimetry. Hydroxyl functionalized POSS was employed as a surface modifier for clay which gives stable clay separation for its 3‐D structure and also facilitates the miscibility of polymer with clay in the nanocomposites due to the star architecture. An improvement in the thermal stability of PCL was observed even at 1 wt % of clay loading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Trisilanolphenyl–polyhedral oligosilsesquioxane (trisilanolphenyl–POSS) structure is introduced into a polysiloxane network in an attempt to produce thermally stable material with improved transparency. A series of organic–inorganic resins comprised of diphenylsilanediol, 3‐methacryloxypropyl trimethoxysilane, and varying content of trisilanolphenyl–POSS were copolymerized through condensation followed by curing using phenyltris(hydrogendimethylsiloxy)silane as curing agent. Fourier transform infrared spectroscopy (FTIR), proton‐nuclear magnetic resonance spectroscopy (1H‐NMR), and silicon‐nuclear magnetic resonance spectroscopy (29Si‐NMR) were used to confirm the synthesized product. Excellent thermal stability, improved glass transition temperature (Tg), and lower coefficient of thermal expansion with the increasing POSS content were observed from thermomechanical analysis. Its extreme thermal degradation stability was attributable to the crosslinked network as well as the heavily substituted aromatic ring present in the system. Steric hindrance effect is noticeable beyond 5.66 mol % trisilanolphenyl–POSS content. Incorporation of POSS substituent in methacrylate‐based polysiloxane give excellent transparency and improved thermal discoloration resistance as deduced from UV/vis Spectrophotometer, making it a potential material to be used in optoelectronics. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45285.  相似文献   

14.
采用直接水解法合成了氨丙基笼型倍半硅氧烷(OapPOSS)。为了改善POSS与环氧树脂的相容性和分散性,在OapPOSS基础上制备了仲氨基笼型倍半硅氧烷(SaPOSS),并将其用于E-51/脂肪胺室温固化环氧树脂改性,研究了SaPOSS对环氧树脂力学性能、玻璃化转变温度、介电性能的影响。结果表明:SaPOSS能显著提高树脂的冲击性能和耐热性,降低介电常数和介电损耗。当SaPOSS加入量为3%时,环氧树脂的冲击强度从原来的20.5kJ/m2,提高到了29.7kJ/m2,玻璃化转变温度从113℃提高到117℃,扫描电镜的观测结果与力学性能的变化趋势相一致。当SaPOSS加入量为5%时,介电损耗从原来的0.035降到了0.024,介电常数也有大幅下降。  相似文献   

15.
A benzoxazine monomer (VB‐a) containing an allyl groups was synthesized through the Mannich condensation of bisphenol A, formaldehyde, and allylamine (bisphenol‐A and allylamine as VB‐a). This monomer was then reacted with polyhedral oligomeric silsesquioxane (POSS) through hydrosilylation, followed by thermal curing to form poly(VB‐a)/POSS hybrid nanocomposites. The curing behavior of the nanocomposites was monitored using Fourier transform infrared spectroscopy (FTIR), and their thermal and morphological properties were investigated through thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and scanning electron microscopy. DMA revealed that the glass transition temperatures of the poly(VB‐a)/POSS nanocomposites were higher than that of the pristine poly(VB‐a), presumably because the POSS cages effectively hindered the motion of the polymer chains. TGA confirmed that the thermal degradation temperatures and char yields of the polybenzoxazines increased after incorporation of the POSS moieties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
为改善环氧树脂的介电性能及提升石英纤维的界面性能,使用缩水甘油醚基笼型倍半硅氧烷(G-POSS)和γ-氨丙基三乙氧基硅烷(KH-550)分别对环氧树脂和石英纤维进行改性.利用差示扫描量热法研究改性后环氧树脂的固化过程,并通过外推法确定了其固化工艺,根据固化工艺制备环氧树脂/石英纤维复合材料,分别对该复合材料的热稳定性、...  相似文献   

17.
The structural effects of polydimethylsiloxane (PDMS) or polyhedral oligosilsesquioxanes (POSSs) on the thermomechanical properties of polyurethane (PU) networks were studied. An ester–amine‐functionalized silsesquioxane and a PDMS macromer were synthesized, and the macromer (10 wt %) was crosslinked with the PU prepolymer to obtain PU networks. The synthesized macromers and hybrids were characterized with Fourier transform infrared, 1H‐NMR, 13C‐NMR, and 29Si‐NMR spectroscopy techniques. The influence of POSS cubes on the thermal and mechanical properties of the polymer network films was studied comparatively with the similarly functionalized PDMS linear chain via thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) measurements. The degradation pattern of the POSS‐incorporated PU nanocomposites was almost the same as that of the PU network synthesized from the linear PDMS macromer. The differences in the char yields and activation energies of the hybrids reflected the enhancement of the thermal properties of the nanohybrids. The TGA and DSC curves of the macromers suggested that the thermal properties of the macromers not only depended on either the PDMS or POSS inorganic core but also depended on the organic peripheral attached to the inorganic core. The glass‐transition temperatures of the nanohybrids were higher than those of the linear‐PDMS‐incorporated hybrids. The storage modulus values increased 3‐fold upon the incorporation of POSS rigid groups into the PU hybrids in comparison with the flexible PDMS‐chain‐incorporated PU hybrids. The DMA measurements showed a long‐range rubbery plateau region for all the PU hybrids, with high storage modulus and tan δ values showing the structural homogeneity of the crosslinked networks. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
Biodegradable organic–inorganic hybrids based on poly(?‐caprolactone) (PCL) and polyhedral oligomeric silsesquioxane (POSS) with 5.3–21.3 wt % POSS were synthesized via ring‐opening polymerization (ROP). Chemical structures of the polymers were characterized by proton nuclear magnetic resonance (1H NMR), fourier transform infrared spectroscopy (FTIR), and gel permeation chromatography (GPC). X‐ray diffraction (XRD) analysis illustrated that both POSS and PCL segment in POSS/PCL hybrids could crystallize and form two well‐separated crystalline phases except in the one with low content of POSS (5.3 wt %). Melting behavior and non‐isothermal crystallization kinetics of POSS/PCL hybrids were studied by differential scanning calorimeter (DSC). The results indicated that the POSS segment suppressed crystallization of the PCL segment to some extent. Polarizing optical microscope (POM) images showed that POSS/PCL hybrids with the highest POSS loading (21.3 wt %) possessed “snowflake” shape crystals whereas the ones with relatively low POSS loading exhibited classic spherulites. Thermogravimetry (TG) measurement revealed that thermal degradation of POSS/PCL hybrids proceeded by four‐step while PCL homopolymers degraded by a single step. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44113.  相似文献   

19.
In this study, we used the Mannich condensation of bisphenol A, formaldehyde, and allylamine to synthesize a allyl‐terminated benzoxazine (VB‐a), which can be polymerized through ring opening polymerization. We used this VB‐a monomer, blended with octakis(propylglycidyl ether) polyhedral oligomeric silsesquioxane (OG‐POSS), to prepare polybenzoxazine/POSS nanocomposites. Differential scanning calorimetry and Fourier transform infrared (FTIR) spectroscopy revealed that the mechanism of the crosslinking reaction leading to the formation of the organic/inorganic network involved two steps: (i) ring opening and allyl polymerizations of VB‐a and (ii) subsequent reactions between the in situ‐formed phenolic hydroxyl groups of VB‐a and the epoxide groups of OG‐POSS. Dynamic mechanical analysis revealed that the nanocomposites had higher mechanical properties than did the control VB‐a. In the glassy state, nanocomposites containing less than 10 wt % POSS displayed enhanced storage moduli; those of the nanocomposites containing greater than 10 wt % POSS were relatively low, due to aggregation, as determined using scanningelectron microscopy. Thermogravimetric analysis indicated that the nanocomposites possessed greater thermal stability than that of the pure polymer. FTIR spectroscopic analysis revealed the presence of hydrogen bonding between the siloxane groups of POSS and the OH groups of the polybenzoxazine. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

20.
A novel kind of high‐performance hybrids (coded as POSS‐NH2/BT) with significantly decreased curing temperature, lowered dielectric constant and loss, and improved thermal resistance were developed, which were prepared by copolymerizing bismaleimide with cage octa(aminopropylsilsesquioxane) (POSS‐NH2) to produce POSS‐containing maleimide, and then co‐reacted with 2,2′‐bis(4‐cyanatophenyl) isopropylidene. The curing behavior and typical properties of cured POSS‐NH2/BT were systematically investigated. Results show that POSS‐NH2/BT hybrids have lower curing temperatures than BT resin because of the additional reactions between  OCN and amine groups. Compared with BT resin, all hybrids show improved dielectric properties. Specifically, hybrids have slightly decreased dielectric constants and similar dependence of dielectric constant on frequency over the whole frequency from 10 to 106 Hz; more interestingly, the dielectric loss of hybrids is only 25% of that of BT resin at the frequency lower than 105 Hz, whereas all hybrids and BT resin have almost equal dielectric loss when the frequency is higher than 105 Hz. In addition, POSS‐NH2/BT hybrids also show good thermal and thermo‐oxidative stability compared with BT resin. All these differences in macroproperties are attributed to the difference in chemical structure between POSS‐NH2/BT hybrids and BT resin. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号