首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paper membranes made from vulcanized cellulose were used for the pervaporation (PV) of aqueous solutions containing methanol, ethanol, and isopropanol. It was noted that the vulcanized cellulose paper membranes (VCPM) could effectively separate alcohol and water from the mixture solutions. To observe the effect of the separation of alcohol aqueous mixtures, the permeation behavior of water and alcohol was examined by means of the separation factor and the permeation flux. The values of the permeation flux in the ethanol/water mixtures were found to vary from 6.2 kg/m2h to 2.1 kg/m2h, as the concentration of ethanol increased from 8 to 87 wt %, and the separation factor (α) changed from α = 2.6 to 6.6, respectively. This showed that the VCPM enhanced the separation of water and alcohol. The highest value observed for the permeation flux was 11 kg/m2h at 87 wt % of methanol concentration and the separation factor at this condition was 4.1. It was shown also that an efficient separation was obtained in the isopropanol/water mixture with a separation factor of 16.6. The contact angles of alcohol/water droplets on the VCPM were measured as well as the wettability of the membrane. There was a tendency of decrease for the contact angle, as the alcohol concentration decreased. This suggested that the solvent wettability decreased in high alcohol concentrations. It was concluded that a high permeabilitty of water through the VCPM resulted in the separation of alcohols and water in the PV process. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Permeation and separation characteristics for aqueous alcoholic solutions such as methanol/water, ethanol/water and 1-propanol/water were studied using a poly(dimethyl siloxane) membrane by pervaporation and evapomeation. Poly(dimethyl siloxane) membrane preferentially permeated alcohol from aqueous alcoholic solutions in both methods. The concentration of alcohol in the permeate by evapomeation was higher than that by pervaporation. However, the permeation rate for the former method was smaller than that for the latter method. In evapomeation with a temperature difference between the feed solution and the membrane surroundings, when the temperature of the membrane surroundings was kept constant and the temperature of the feed solution was raised, both the permeation rate and the permselectivity for ethanol increased with increasing temperature of the feed solution. On the other hand, as the temperature of the feed solution was kept constant and the temperature of the membrane surroundings was changed, the permeation rate decreased, but the permselectivity for ethanol increased remarkably with dropping temperature in the membrane surrounding. Under permeation conditions of a feed solution of 40°C and a membrane surrounding temperature of ?30°C in evapomeation, an aqueous solution of 10 wt % ethanol in the feed was concentrated to about 90 wt % in the permeate. The permselectivity for alcohol was in the order of methanol <ethanol <1-propanol. The above permeation and separation characteristics are discussed from the viewpoint of the physicochemical properties of the poly(dimethyl siloxane) membrane and the permeating molecules.  相似文献   

3.
The modification of polyacrylonitrile membrane with ethanolamine was carried out, and the permeation characteristics in pervaporation were examined using the aqueous alcohol solutions. In pervaporation of a water/alcohol solution, preferential permeation of water was observed for all these membranes because of the hydrogen-bonding interaction. The selectivity of the modified polyacrylonitrile (PAN) membrane depended on operating temperature, but was independent on the thickness of the membrane. Furthermore, it was found that the membrane with more ethanolamine content had a higher affinity to water. The effect of feed concentration and the molecular size of the permeating species on the separation factor and permeation flux was also investigated.  相似文献   

4.
The characteristics of permeation and separation for aqueous solutions of methanol and ethanol through a poly[bis(2,2,2-trifluoroethoxy)phosphazene] (PBTFP) membrane were studied by pervaporation and evapomeation. In pervaporation technique, methanol was preferentially permeated in all of the feed solution compositions and ethanol was permeated in lower ethanol concentrations of the feed solution. Water was predominantly permeated from the feed solutions with higher ethanol concentration. In evapomeation technique, water was selectively permeated in both all of the feed vapor compositions for aqueous methanol and ethanol solutions. These different permselectivities depended on the feed composition and the membrane permeation technique and could be discussed by a difference in the mechanisms of permeation and separation. It was found that the permeation rate was influenced remarkably by the degree of swelling of the PBTFP membrane and the permselectivity for water of aqueous alcoholic solutions was enhanced by an increasing degree of swelling of the membrane. When the degree of swelling of the membrane with rising permeation temperature was small, both the permeation rate and permselectivity for alcohol in pervaporation and evapomeation increased with the permeation temperature. The above results are discussed considering the PBTFP membrane structure in evapomeation and pervaporation.  相似文献   

5.
The permeation behaviors of permeants were investigated in the pervaporation of a homologous series of alcohol aqueous mixtures through a hydrophilic poly(vinyl alcohol) (PVA). The PVA membrane was crosslinked with glutaraldehyde. A homologous series of alcohols used in this study were methanol, ethanol, 1‐propanol, and 1‐butanol. The pervaporation experiments were carried out with feed having 70–97 wt % of alcohol contents and at various feed temperatures. In a high alcohol content above 92 wt %, the permeation rate was increased in the order of the interaction strength between alcohol and water in the feed. However, in a low alcohol content below 90 wt %, the tendency of the permeation rate was found to be the opposite, indicating that the interactions between permeant constituents play an important role in determining the permeation and separation of the mixtures. These observations were discussed in terms of changes in the interaction between the permeant/permeant or the permeant/membrane in varying feed compositions and feed temperatures. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 703–713, 2001  相似文献   

6.
The pervaporation performances of a series of functionalized syndiotactic poly(styrene‐co‐4‐methylstyrene) (SPSM) membranes for various alcohol mixtures were investigated. The syndiotactic polystyrene copolymers, poly(styrene‐co‐4‐methylstyrene) (SPSM), were prepared by styrene with 4‐methylstyrene using a Cp*Ti(OCH3)3/methyl aluminoxane (metallocene/MAO) catalyst. The effect of functionalization on the thermal properties and polymer structure of the SPSM membranes were also investigated. The crystallinity of the functionalized SPSM membrane is lower than that of the unfunctionalized SPSM membranes. The water molecules preferentially permeate through the SPSM membranes. Compared with unfunctionalized SPSM membranes, the functionalized SPSM membrane effectively increases the membrane formation performances and the pervaporation performances. The optimun pervaporation performance (a separation factor of 510 and permeation rate of 220 g/m2h) was obtained by the bromination of SPSM (SPSMBr) membrane with a 90 wt % aqueous ethanol solution. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2247–2254, 2002  相似文献   

7.
In this article a modified polydimethylsiloxane (PDMS) blended polystyrene (PS) interpenetrating polymer network (IPN) membranes supported by Teflon (polytetrafluoroethylene) ultrafiltration membrane were prepared for the separation of ethanol in water by pervaporation application. The relationship between the surface characteristics of the surface‐modified PDMS membranes and their permselectivity for aqueous ethanol solutions by pervaporation are discussed. The IPN supported membranes were prepared by sequential IPN technique. The IPN supported membrane were tested for the separation performance on 10 wt % ethanol in water and were characterized by evaluating their mechanical properties, swelling behavior, density, and degree of crosslinking. The results indicated that separation performance, mechanical properties, density, and the percentage of swelling of IPN membranes were influenced by degree of crosslink density. Depending on the feed temperature, the supported membranes had separation factors between 2.03 and 6.00 and permeation rates between 81.66 and 144.03 g m?2 h?1. For the azeotropic water–ethanol mixture (10 wt % ethanol), the supported membrane had at 30°C a separation factor of 6.00 and a permeation rate of 85 g m?2 h?1. Compared to the PDMS supported membranes, the PDMS/PS IPN supported blend membrane ones had a higher selectivity but a somewhat lower permeability. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Two types of dense poly(vinyl alcohol) (PVA) membranes crosslinked with glutaraldehyde were prepared by a new solution technique: membranes with uniform crosslinking structure and with crosslinking gradient structure. From the permeation of pure water through a membrane having a uniform crosslinking structure, the effect of crosslinking density in the membrane on the permeation activation energy, plasticizing coefficient, and diffusivity of the permeant was investigated. The concentration and activity profiles of the permeant in the membrane in the pervaporation process were determined using the diffusion equation and Flory–Huggins thermodynamics. PVA membranes having a crosslinking gradient structure were fabricated by exposing one side of the membrane to the reaction solution while the other side was blocked by a polyester film to prevent the reaction solution from contacting it. The extent of the gradient was controlled by the exposing time. The pervaporation separation of the water–acetic acid mixture was carried out on the membrane having a crosslinking gradient structure, and the pervaporation performance with different membrane loading in the membrane cell was discussed using a schematic concentration and activity profiles of the permeant which was made based on the results from the permeation of a pure component through the membrane with a uniform crosslinking structure. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Polysulfone (PSF) hollow fiber membranes were spun by phase‐inversion method from 29 wt % solids of 29 : 65 : 6 PSF/NMP/glycerol and 29 : 64 : 7 PSF/DMAc/glycol using 93.5 : 6.5 NMP/water and 94.5 : 5.5 DMAc/water as bore fluids, respectively, while the external coagulant was water. Polyvinyl alcohol/polysulfone (PVA/PSF) hollow fiber composite membranes were prepared after PSF hollow fiber membranes were coated using different PVA aqueous solutions, which were composed of PVA, fatty alcohol polyoxyethylene ether (AEO9), maleic acid (MAC), and water. Two coating methods (dip coating and vacuum coating) and different heat treatments were discussed. The effects of hollow fiber membrane treatment methods, membrane structures, ethanol solution temperatures, and MAC/PVA ratios on the pervaporation performance of 95 wt % ethanol/water solution were studied. Using the vacuum‐coating method, the suitable MAC/PVA ratio was 0.3 for the preparation of PVA/PSF hollow fiber composite membrane with the sponge‐like membrane structure. Its pervaporation performance was as follows: separation factor (α) was 185 while permeation flux (J) was 30g/m2·h at 50°C. Based on the experimental results, it was found that separation factor (α) of PVA/PSF composite membrane with single finger‐void membrane structure was higher than that with the sponge‐like membrane structure. Therefore, single finger‐void membrane structure as the supported membrane was more suitable than sponge‐like membrane structure for the preparation of PVA/PSF hollow fiber composite membrane. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 247–254, 2005  相似文献   

10.
The selective permeation of organic solvents and water through graphene oxide (GO) membranes has been demonstrated. Water was found to permeate through GO membranes faster than various alcohols. The permeation rates of ethanol, 1-propanol and 2-propanol (IPA) are about 80 times lower than that of water. Taking advantage of the differences in the permeation rates, we separated water from the alcohols and obtained alcohols with high purity. For ethanol and 1-propanol, binary solutions of the alcohol and water were filtered efficiently to produce alcohols with concentration of about 97%. However, the selectivity of the filtration of methanol is significantly lower than those of the other alcohols. To understand the mechanism we followed the structural changes in the GO membranes by X-ray diffraction analysis. From the X-ray diffraction results we speculate that the selectivity of the permeation of water and alcohols is closely related to the molecular sizes of the solvents and their polarity. In order to demonstrate the potential applications of this process for the selective removal of water from aqueous organic mixtures, we performed the separation of water from a bio-oil containing 73% of water. The majority of the water was filtered out resulting in a higher purity bio-oil.  相似文献   

11.
Asymmetric polyelectrolyte complex (PEC) membranes composed of chitosan membrane and absorbed poly(acrylic acid) (PAA) were constructed. Absorption and therefore PEC formation were performed by bringing a chitosan membrane into contact with a PAA aqueous solution. The mean molecular weight (MW) of PAA employed was 5,000, 25,000 or 250,000. Absorption of PAA and asymmetry of PEC membranes were confirmed and evaluated by Fourier transform infrared (FTIR) spectra and electron spectroscopy for chemical analysis (ESCA). The absorption quantity of PAA decreased while the water selectivity of the PEC membrane increased with an increase in the MW of constituent PAA. In a pervaporation experiment, the water selectivity of the membrane was so high that no ethanol was detected by gas chromatography (GC). Such selectivity was attained by just a small quantity of PEC formation at the surface of the chitosan membrane. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 265–271, 2002  相似文献   

12.
Sulfated zirconia‐poly(vinyl alcohol) membranes were prepared, and pervaporation performances for aqueous organic mixtures were investigated. These hydrophilic membranes were formed by crosslinking poly(vinyl alcohol) (PVA) with the solid acid of sulfated zirconia by an acid‐catalyzed reaction. The pervaporation performances were measured as a function of the content ratio of sulfated zirconia to PVA, which affected the degree of swelling for water and the crosslinking density of the membrane. The membrane selectivity in pervaporation of aqueous organic mixtures increased in order of acetic acid < ethanol < 2‐ethoxyethanol without sacrificing the permeation rate, depending on their feed compositions. The effects of feed temperature and concentration on the membrane performance were also significant. It was found that sulfated zirconia in the membrane preparation played an important role as a filler material as well as an effective crosslinking or insolubilization agent in improving and controlling the membrane performance, i.e., permeation rate and selectivity. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1450–1455, 2001  相似文献   

13.
The present study investigated the pervaporation performance of novel hydroxypropylated chitosan (HPCS) membranes to separate water from an aqueous alcohol solution. Hydroxypropylated chitosan was prepared from the reaction of chitosan and propylene oxide. The results show that the separation factor decreases and the flux increases with increasing of the substitution degree of the hydroxypropylated chitosan membrane. Crosslinking with glutaraldehyde or treatment with Cu2+ can improve the pervaporation performance of modified chitosan membrane grately. The performance data indicate that the crosslinking hydroxypropylated chitosan membrane treated with Cu2+ is an excellent pervaporation membrane for the separation of alcohol–water mixtures, and one-stage separation is attainable for some alcohol–water mixtures such as an n-propanol–water and an isopropanol–water system, which has a good separation factor of 220 for the n-PrOH/water system and 240 for the i-PrOH/water system using 85 wt % alcohol concentration at 60°C. The flux for both cases is around 0.5 kg m−2 h−1. At the same time, the structure of the chemically modified chitosan membranes and their separation characteristics for aqueous alcohol solutions are also discussed. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2035–2041, 1998  相似文献   

14.
Hydrophilic polyvinyl alcohol membranes, modified by lithium bromide, were prepared with glutaraldehyde as a crosslinking reagent. The membranes were investigated for the pervaporation dehydration of a water–isopropyl systems. The effect of the feed temperature on permeation flux and membrane selectivity was studied. The characterization of modified membranes was performed using Fourier transform infrared spectroscopy (FT‐IR), differential scanning calorimeter (DSC) and X‐ray diffraction. It was observed that the crystallinity of membranes increased as lithium bromide was added to the polymer. High performance liquid chromatography (HPLC) was used to analyze water content and isopropyl alcohol in the feed and permeate samples The pervaporation tests also confirmed an enhancement in water permeability through adding LiBr to the polymer, because of the high hydrophilic properties of this salt. According to pervaporation experiments conducted at 50°C, the water flux increased from 0.1049 kg/ m2 hr to 0.1114 kg/ m2 hr as 0.5 wt% of LiBr was added to the polymer matrix. Furthermore, an addition of 1 wt% of LiBr compared to homogeneous PVA membrane increased selectivity from 76 to 779. POLYM. ENG. SCI., 59:E101–E111, 2019. © 2018 Society of Plastics Engineers  相似文献   

15.
Pervaporation membranes derived from seven homopolymers of poly(amide-sulfonamide)s (PASAs) were prepared by casting 10–17% polymer solutions of N,N-dimethylacetamide. The membranes were characterized by sorption experiments, scanning electron microscope, and wide-angle X-ray diffraction. During the pervaporation of 90 wt % aqueous solution of methanol, ethanol, 1-propanol, and 2-propanol, all membranes were preferentially permeable to water, and their separation factors were mainly dependent on the molecular weight of the solvent. The exact structure of the PASAs had a profound effect on their pervaporation characteristics. Polymeric membrane based on N,N′-bis(4-aminophenylsulfonyl)-1,3-diaminopropane and isophthaloyl chloride exhibited the best selectivity factor of 1984 for a 10 : 90 (by weight) mixture of water/ethanol at 20°C. However, the permeation rates of all materials for dehydration of 90 wt % ethanol were slow in a range of 6.6–34.4 g m−2 h−1. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:1113–1119, 1997  相似文献   

16.
Permeation and separation characteristics for the feed vapours from aqueous alcoholic solutions through chitosan derivative membranes such as chitosan acetate (GA-ChitoA), chitosan (GA-Chito), and carboxymethyl chitosan acetate (GA-CM-ChitoA) membrane crosslinked with glutaraldehyde were investigated by evapomeation. The GA-Chito and GA-CM-ChitoA membranes prepared from casting solutions containing an optimum amount of glutaraldehyde showed a high permeation rate and high water permselectivity for an azeotropic composition in an aqueous ethanol solution. The permselectivity for water through the GA-CM-ChitoA membrane in evapomeation was in the order of aqueous solutions of methanol < ethanol < 1-propanol. The effect of the chemical and physical structure of these hydrophilic membranes on the permeation and separation characteristics is discussed.  相似文献   

17.
Crosslinked blended membranes of poly(vinyl alcohol) (PVA) and N-methylol nylon-6 were prepared either by thermal crosslinking at 180°C or by chemical crosslinking with maleic acid. The pervaporation performance for the separation of ethanol–water mixtures of these membranes was investigated in terms of feed concentration, PVA content, and crosslinking agent content. The pervaporation performance of two differently crosslinked membranes was strongly influenced by the nature of the crosslinkage. Significant improvement in the pervaporation separation index can be achieved for chemically crosslinked membranes. From the comparison between the pervaporation and sorption tests, it is suggested that, for hydrophilic membranes, sorption properties dominate the pervaporation performance at feed solutions of higher water content, while diffusion properties govern at feed solutions of higher ethanol content. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 317–327, 1998  相似文献   

18.
《分离科学与技术》2012,47(6):981-992
Abstract

Latex membranes have recently been investigated for their application in pervaporation separation processes. Acrylonitrile-butyl acrylate copolymer latex membrane showed selective permeation to water in pervaporation with water-ethanol mixtures. Different from solvent-cast membranes, the pervaporation properties of latex membranes were found to change with the membrane aging time or under different aging conditions. It is shown that aging leads to better membrane fusion, thus decreasing the permeation rate and increasing the separation factor. Aging the membrane in a medium which keeps the latex particle from good fusion would cause a high permeation rate but a low separation factor. Based on our observations, a comprehensive transport mechanism of the permeant through latex membranes during pervaporation is proposed.  相似文献   

19.
The disadvantage of dense polyamide membranes when applied in the pervaporation separation process is their low permeation rates. To improve the pervaporation performance, polyamide thin‐film composite membranes were prepared via the interfacial polymerization reaction between ethylenediamine (EDA) and trimesoyl chloride (TMC) on the surface of modified polyacrylonitrile (mPAN) membranes. These composite membranes were applied in the pervaporation separation of alcohol aqueous solutions. On the basis of the best pervaporation performance, the desired polymerization conditions for preparing the polyamide thin‐film composite membranes (EDA–TMC/mPAN) were as follows: (1) the respective concentration and contact time of the EDA aqueous solution were 5 wt % and 30 min and (2) the respective concentration of and immersion time in the TMC organic solution were 1 wt % and 3 min. The polyamide thin‐film composite membranes (EDA–TMC/mPAN) exhibited membrane durability when applied in the pervaporation separation of a 90 wt % isopropyl alcohol aqueous solution at 70°C, which indicated that the polyamide thin film composite (TFC) membranes were suitable for the pervaporation separation process at a high operating temperature. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
For the separation of volatile organic compounds (VOCs) from water by pervaporation, three polysiloxaneimide (PSI) membranes were prepared by polycondensation of three aromatic dianhydrides of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA), 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA), and pyromellitic dianhydride (PMDA) with a siloxane‐containing diamine. The PSI membranes were characterized using 1H‐NMR, ATR/IR, DSC, XRD, and a Rame‐Hart goniometer for contact angles. The degrees of sorption and sorption selectivity of the PSI membranes for pure organic compounds and organic aqueous solutions were investigated. The pervaporation properties of the PSI membrane were investigated in connection with the nature of organic aqueous solutions. The effects of feed concentration, feed temperature, permeate pressure, and membrane thickness on pervaporation performance were also investigated. The PSI membranes prepared have high pervaporation selectivity and permeation flux towards hydrophobic organic compounds. The PSI membranes with 150‐μm thickness exhibit a high pervaporation selectivity of 6000–9000 and a high permeation flux of 0.031–0.047 kg/m2 h for 0.05 wt % of the toluene/water mixture. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2691–2702, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号