首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyacrylonitrile (PAN) and PAN/carbon nanotube (PAN/CNT) fibers were manufactured through dry‐jet wet spinning and gel spinning. Fiber coagulation occurred in a solvent‐free or solvent/nonsolvent coagulation bath mixture with temperatures ranging from ?50 to 25°C. The effect of fiber processing conditions was studied to understand their effect on the as‐spun fiber cross‐sectional shape, as well as the as‐spun fiber morphology. Increased coagulation bath temperature and a higher concentration of solvent in the coagulation bath medium resulted in more circular fibers and smoother fiber surface. as‐spun fibers were then drawn to investigate the relationship between as‐spun fiber processing conditions and the drawn precursor fiber structure and mechanical properties. PAN precursor fiber tows were then stabilized and carbonized in a continuous process for the manufacture of PAN based carbon fibers. Carbon fibers with tensile strengths as high as 5.8 GPa and tensile modulus as high as 375 GPa were produced. The highest strength PAN based carbon fibers were manufactured from as‐spun fibers with an irregular cross‐sectional shape produced using a ?50°C methanol coagulation bath, and exhibited a 61% increase in carbon fiber tensile strength as compared to the carbon fibers manufactured with a circular cross‐section. POLYM. ENG. SCI., 55:2603–2614, 2015. © 2015 Society of Plastics Engineers  相似文献   

2.
The jet stretch of wet‐spun PAN fiber and its effects on the cross‐section shape and properties of fibers were investigated for the PAN‐DMSO‐H2O system. Evidently, the spinning parameters, such as dope temperature, bath concentration, and bath temperature, influenced the jet stretch. Also, under uniform conditions, the postdrawing ratio changed as well as that of jet stretch. When coagulation temperature was 35°C simultaneously with bath concentration of 70%, jet stretch impacted obviously the cross‐section shapes of PAN fiber, but had little effect when the temperature was below 10°C or above 70°C. As the jet stretch ratio increased, the crystallinity, crystal size, sonic orientation, and mechanical properties of the as‐spun fiber changed rapidly to a major value for jet stretch ratio of 0.9 where the cross section of as‐spun fiber was circular. With further increasing of jet stretch ratio, the properties changed slightly but the fiber shape was not circular. The results indicated that appropriate jet stretch, under milder formation conditions in wet‐spinning, could result in the higher postdrawing ratio and circular profile of PAN fiber, which were helpful to produce round PAN precursor with minor titer and perfect properties for carbon fiber. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
采用还原法从羽毛中提取角蛋白,制得羽毛蛋白质粉,再将其与聚乙烯醇(PVA)共混进行湿法纺丝,制备羽毛角蛋白/PVA共混纤维;借助X射线衍射、扫描电子显微镜等,研究了凝固浴温度和浓度对初生纤维力学性能、结晶结构、形态结构的影响。结果表明:较高的凝固浴浓度和凝固浴温度有利形成物理机械性能良好的初生纤维;羽毛角蛋白/PVA初生纤维的结晶度在50%左右,其结晶度和结晶尺寸受凝固浴温度和浓度的影响;可以通过改变凝固浴温度和浓度条件,得到沟槽比较浅表面光滑的初生纤维。  相似文献   

4.
利用实验室自制的聚酰亚胺(P)I溶液,通过干湿法纺丝制得PI初生纤维。在以水和N-甲基吡咯烷酮(NMP)混合溶液(体积比8∶2)作为凝固浴,凝固浴温度为5~15℃的条件下,所得初生纤维结构均匀密实,纤维截面呈圆形或腰圆形。在对初生纤维进行热处理时,随着热处理温度升高和时间增加,PI纤维的力学性能增强。当热处理温度为300~320℃、时间为30 min时,PI纤维的力学性能最优,其断裂强度和初始模量达到2.474 cN/dtex和50.066 cN/dtex;当热处理温度高于320℃,时间超过1 h,纤维力学性能又缓慢下降。纤维的热稳定性较好,在500℃左右仍具有较好的热稳定性。  相似文献   

5.
Historically, polyaniline (PANI) had been considered an intractable material, but it can be dissolved in some solvents. Therefore, it could be processed into films or fibers. A process of preparing a blend of conductive fibers of PANI/poly‐ω‐aminoundecanoyle (PA11) is described in this paper. PANI in the emeraldine base was blended with PA11 in concentrated sulfuric acid (c‐H2SO4) to form a spinning dope solution. This solution was used to spin conductive PANI / PA11 fibers by wet‐spinning technology. As‐spun fibers were obtained by spinning the dopes into coagulation bath water or diluted acid and drawn fibers were obtained by drawing the as‐spun fibers in warm drawing bath water. A scanning electron microscope was employed to study the effect of the acid concentration in the coagulation bath on the microstructure of as‐spun fibers. The results showed that the coagulating rate of as‐spun fibers was reduced and the size of pore shrank with an increase in the acid concentration in the coagulation bath. The weight fraction of PANI in the dope solution also had an influence on the microstructure of as‐spun fibers. The microstructure of as‐spun fibers had an influence on the drawing process and on the mechanical properties of the drawn fibers. Meanwhile, the electrically conductive property of the drawn fibers with different percentage of PANI was measured. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1458–1464, 2002  相似文献   

6.
Polyacrylonitrile (PAN) fibers were spun by solution spinning. In this work, two coagulation compositions, dimethyl sulfoxide (DMSO)/water and methanol, were used, and coagulation temperatures were varied from ?20 to 0 to 20 °C. The coagulation compositions and temperatures strongly affected the solvent diffusion processes, the structures of as‐spun fibers, and the tensile properties of final drawn fibers. When DMSO/water was used as coagulation bath, non‐solvent (water) diffused into PAN fibers and led to a quick PAN solidification. By comparison, when methanol was used as coagulation bath, no or minimal amount of methanol diffused inward to the fibers. The different solvent diffusion behaviors in DMSO/water and methanol baths led to different structures of as‐spun PAN fibers. It was observed that the tensile properties of final drawn fibers strongly depended on the coagulation conditions. When methanol was used as coagulation bath and the bath temperature was ?20 °C, PAN fibers was found to possess the best tensile properties, a tensile strength of 0.89 GPa and young modulus of 20.4 GPa. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44390.  相似文献   

7.
As one member of high performance fibers, aromatic polyimide fibers possess many advantages, such as high strength, high modulus, high and low temperature resistance, and radiation resistance. However, the preparation of the high performance fibers is so difficult that the commercial fibers have not been produced except P84 with good flame retardancy. In this report, a polyimide was synthesized from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA) and 4,4′‐oxydianiline (ODA) and the fibers were prepared from its solution by a dry‐jet wet‐spinning process. The formation of the as‐spun fibers in different coagulation bath composition was discussed. Scanning electron microscope (SEM) was employed to study the morphology of the as‐spun fibers. As a result, the remnant solvent existed in the as‐spun fibers generated from coagulation bath of alcohol and water. There were many fibrils and microvoids with the dimension of tens of nanometers in the fibers. One could observe the obvious fibrillation and the drawn fibers. The measurement for the mechanical properties of the fibers with a drawing ratio of 5.5 indicated that tensile strength and initial modulus were 2.4 and 114 GPa, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 669–675, 2004  相似文献   

8.
The concentrations and temperatures of ultrahigh‐molecular‐weight polyethylene (UHMWPE) gel solutions exhibited a significant influence on their rheological and spinning properties. The shear viscosities of UHMWPE solutions increased consistently with increasing concentrations at a constant temperature above 80°C. Tremendously high shear viscosities of UHMWPE gel solutions were found as the temperatures reached 120–140°C, at which their shear viscosity values approached the maximum. The spinnable solutions are those gel solutions with optimum shear viscosities and relatively good homogeneity in nature. Moreover, the gel solution concentrations and spinning temperatures exhibited a significant influence on the drawability and microstructure of the as‐spun fibers. At each spinning temperature, the achievable draw ratios obtained for as‐spun fibers prepared near the optimum concentration are significantly higher than those of as‐spun fibers prepared at other concentrations. The critical draw ratio of the as‐spun fiber prepared at the optimum concentration approached a maximum value, as the spinning temperature reached the optimum value of 150°C. Further investigations indicated that the best orientation of the precursors of shish‐kebab‐like entities, birefringence, crystallinity, thermal and tensile properties were always accompanied with the as‐spun fiber prepared at the optimum concentration and temperature. Similar to those found for the as‐spun fibers, the birefringence and tensile properties of the draw fibers prepared at the optimum condition were always higher than those of drawn fibers prepared at other conditions but stretched to the same draw ratio. Possible mechanisms accounting for these interesting phenomena are proposed.  相似文献   

9.
A new gel‐spinning method was employed to prepare polyacrylonitrile (PAN) fibers from a PAN spinning solution with dimethylsulfoxide and water as a mixed solvent. Aging at 25 °C for 120 min brought the spinning solution to the sol–gel transition and a three‐dimensional gel formed before entering the coagulation bath. The as‐spun fibers from the solution at the sol–gel transition and in the gel state possess a circular cross‐section. Compared with dry‐jet wet‐spun fibers, the gel‐spun fibers have a more compact structure, fewer voids and better mechanical properties after a three‐stage drawing. Moreover, the gel‐spun fibers obtained from the extraction bath have a more homogeneous microstructure and better packed supermolecular structure. The physical properties of the extracted gel‐spun fibers are also better than those of coagulated gel‐spun fibers. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
以离子液体(氯化1-甲基-3-正丁基咪唑)溶解高聚合度细菌纤维素(BC),采用湿法纺丝制备再生细菌纤维素(RBC)初生纤维;通过红外光谱分析(FTIR)、广角X射线衍射(WAXD)分析、热失重(TG)分析、扫描电镜( SEM)、单丝强度拉伸等表征了RBC初生纤维的结构和性能.结果表明:该溶剂体系通过10 h的快速搅拌溶...  相似文献   

11.
高分子量聚丙烯腈纤维的干湿法成形工艺及纤维性能研究   总被引:8,自引:0,他引:8  
采用正交试验设计法研究了高分子量PAN纤维的干湿法纺丝工艺,开考察了凝固浴温度和浓度及预热和热水拉伸对纤维性能的影响.结果表明,采用干湿法纺制高分子量PAN纤维,在一定的喷出速度下进行喷出正拉伸并给予纤维一定的预热拉伸和高倍热水拉伸,可制得强度较高的纤维.纤维经过热拉伸并热定型后,其强度可达到7.5cN/dtex.  相似文献   

12.
The coagulation dynamics of acrylic polymer (PAN) with 1‐butyl‐3‐methylimidazolium chloride [BMIM]Cl as solvent for PAN and H2O as nonsolvent was investigated in detail. On the basis of Fick's second law of diffusion, a mass‐transfer model of [BMIM]Cl from concentrated PAN/[BMIM]Cl solution was established as verified with the experimental data. The established model has a good fit with the experimental data and the diffusion coefficient D of [BMIM]Cl was calculated according to the model. The diffusion coefficient D decreased a little when the concentration of solution increased. As increasing the coagulation bath concentration, the diffusion coefficient D initially increased and then decreased, reaching a maximum of 5 wt% in the coagulation bath. The diffusion coefficient D decreased with the coagulation bath temperature. From the diffusion coefficient and the structure of the coagulated filament, it can be concluded that the diffusion rate of [BMIM]Cl from PAN concentrate solutions is relatively slow, which is prospective to prepare uniform‐structure fibers. POLYM. ENG. SCI., 48:184–190, 2008. © 2007 Society of Plastics Engineers  相似文献   

13.
A dimethyl sulfoxide (DMSO)-water system was used as the coagulation bath in the wet-spun process for poly(acrylonitrile-itaconic acid) fibers. The coagulation bath concentration of DMSO was kept constant at 65%, and the jet stretch ratio was 1. The coagulation bath temperature was varied from 40 to 70 °C. The properties of the fibers so obtained were investigated. The diffusion coefficient of solvent was calculated and the concentration profiles of solvent in a moving filament were computed by using a MOL (method of lines) method. The nascent fibers coagulated at 50 °C obtained a circular symmetrical cross section with high density and strength. The diffusion coefficients of solvent (DMSO) increase with the bath temperature increase. Simulation results show that the noncircular cross section form was the response of the rapid diffusion rate and the loose structure in the core of nascent fibers was caused by the overmuch remained solvent.  相似文献   

14.
Poly(1‐oxotrimethylene) (ECO) was dissolved in aqueous calcium chloride (CaCl2)/zinc chloride (ZnCl2) composite metal salt solutions, and the solutions had phase‐separation temperatures greater than 0°C. A higher proportion of CaCl2 with respect to ZnCl2 increased the phase‐separation temperature of the ECO solutions. When wet spinning was carried out with a coagulation bath at 2°C, an ECO solution with a higher phase‐separation temperature tended to produce greater ECO fiber strength. Therefore, a higher phase‐separation temperature resulted in coagulated filaments with a denser and more homogeneous cross‐sectional structure. When the metal salt concentration of the coagulation bath was increased with an ECO solution with a phase‐separation temperature of 22°C and a coagulation‐bath temperature of 2°C, the strength of the ECO fibers tended to be lower. Although little difference was observed in the uniformity of the fiber cross sections, a higher metal salt concentration in the coagulation bath facilitated greater spherical growth of the coagulated particles. Large, spherical coagulated particles promoted defects during drawing and thus lowered the strength of the ECO fibers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1250–1258, 2005  相似文献   

15.
The jet stretch of dry‐jet wet spun PAN fiber and its effects on the cross‐section shape of fibers were investigated for a PAN‐DMSO‐H2O system. Clearly, the spinning parameters, such as dope temperature, bath concentration, bath temperature, and air gap, all influenced the jet stretch. Also, under uniform conditions, the postdrawing ratio as well as that of jet stretch changed. Under given conditions, as the bath temperature was below 30°C or above 45°C, jet stretch had little effect on the cross‐sectional shapes of PAN fiber. Within the temperature of 30–45°C, fiber's cross‐section shapes change obviously from round over an approximate circular shape into to an elliptical or a flat shape. The scope of jet stretch produced PAN fiber with circular cross‐section was bigger than that in wet spinning. These results indicated that appropriate air gap height, under milder formation conditions in dry‐jet wet spinning, could result in higher jet stretch and higher postdrawing ratio. The appropriate jet stretch and postdrawing ratio could result in circular profile of PAN fiber, which were helpful to produce round PAN precursor with finer size and better properties for carbon fiber. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Elongational viscosities were measured in a wet-spinning apparatus. The advantage of this procedure lies in the fact that excellent temperature control can be maintained and that gravity effects can be neglected for a horizontally spun fiber. As a spin dope, an aqueous solution of polyacrylonitrile (PAN) consisting of approximately 10% polymer and 40% sodium thiocyanate (NaSCN) was spun into a coagulating bath of varying NaSCN content, up to a concentration at which spinning was no longer feasible. Fiber diameters were measured photographically as a function of distance from the spinnerette. Spinning tension readings were made on a multifilament bundle using a calibrated tensiometer. To eschew the influence of the hardening effect arising from mass and heat transfer, the temperatures of the spin dope and coagulating bath were kept constant, while the solvent concentration of the coagulating bath was varied up to a maximum limiting value. In this manner, the theoretical condition of no hardening is approached, and the experimentally determined elongational viscosity approaches a limiting, concentration-independent value. The rheological properties of the spin dope were determined independently in a jet thrust measurement device. Some of the experimentally determined results on elongational viscosity versus rate of elongation were presented and discussed in the light of the theoretical prediction based on various constitutive equations.  相似文献   

17.
凝固浴条件对Lyocell纤维结晶结构的影响   总被引:4,自引:2,他引:4  
探讨了以N-甲基吗啉-N-氧化物(NMMO)为熔剂的Lyocell纤维纺丝工艺中凝固浴条件对纤维结晶结构的影响.实验数据表明:当纺速较低时,凝固浴的浓度和温度对纤维的结构及性能影响较大;而当纺速较高时,这种影响就变小.研究进一步表明:凝固浴温度低或浓度高既有利于提高纤维的结晶度,也有利于晶粒尺寸尤其是横向尺寸的增加,对纤维力学性能也有一定的影响.  相似文献   

18.
The effect of coagulation bath condition on the structure and property of the nascent fibers and polyacrylonitrile fibers during wet‐spinning is studied. The best coagulation condition to produce polyacrylonitrile fibers has been found by examination of EA, XRD, SEM, and so on. The results indicated that when the coagulation bath was DMSO/H2O system, the temperature was 60°C, the concentration was 65%, the minus stretch ratio was ?10%, fine crystallites and high degree of crystallization in the nascent fibers and polyacrylonitrile fibers could be achieved, and less solvents remained in the nascent fibers with circular cross section morphology. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

19.
利用C型喷丝板进行挤出凝固,采用湿法纺丝工艺制备聚丙烯腈(PAN)中空纤维,从PAN/二甲基亚砜(DMSO)纺丝原液的流变性能和凝固过程的相分离两个方面探讨了PAN中空纤维的成形机理。结果表明:纺丝液随剪切速率(γ)的增加逐渐发生由粘性向弹性的转变是挤出胀大的主要原因,其粘弹转变点随着温度的升高而向高γ移动,在60℃下的纺丝液弧片接触成孔的理论临界γ为212 s~(-1);纺丝液在凝固浴中表层成膜是PAN-DMSO-H_2O三元体系相分离的结果,纺丝液细流表面成膜速度是影响孔结构闭合的重要因素,可以通过凝固浴浓度和凝固浴调节剂来控制。  相似文献   

20.
A low gel content poly (styrene-ran-butadiene)/poly (methyl methacrylate) (SBR/PMMA) core/shell particles dispersed in a good solvent for the shell was wet spun into a coagulation bath at room temperature. The SEM micrographs of as spun fibers showed various surface topographies and fiber diameters, ranging from 4.2 up to 20 μm depend upon the draw ratio. The osmium tetroxide stained cross-section of fibers observed by transmission electron microscope (TEM), indicated a heterogeneous morphology consisting of dark cores and fairly light shells, which is a result of self-stratification to an overall core/shell morphology in fiber cross-section. The inner core consisted of higher concentration of copolymers with double bonds, while the outer shell is made mainly of ungrafted PMMA chains. The equilibrium thermodynamic analysis based on minimization of surface free energy predicts a predominant core/shell structure which the SBR chains are encapsulated mainly by ungrafted PMMA homopolymers and SBR-g-PMMA copolymers which agrees quite well with the observed morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号