首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study an attempt was made to obtain lower density of ethylene‐vinyl acetate copolymer (EVA)/ethylene‐1‐butene copolymer (EtBC) foams without sacrificing mechanical properties. For this purpose EVA/EtBC/clay nanocomposite foams were prepared. To investigate the effect of compatibilizer and silane coupling agent on the physical properties of the EVA/EtBC/clay foams, maleic anhydride‐grafted EtBC (EtBC‐g‐MAH) and the most commonly used silane coupling agent in rubbers, bis(3‐triethoxysilylpropyl) tetrasulfide (Si‐69) were used in the preparation of EVA/EtBC/clay nanocomposite foams. The formation of EVA/EtBC/clay nanocomposite foams was supported by X‐ray diffraction results. And, using a compatibilzer and silane coupling agent, lower density of EVA/EtBC/clay nanocomposite foams were obtained without sacrificing mechanical properties except compression set. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3259–3265, 2006  相似文献   

2.
To chemically bond polymer and organoclay, low molecular weight trimethoxysilyl‐modified polybutadiene (Silane) was used in this study. When Silane was added, ethylene‐vinyl acetate copolymer (EVA)/ethylene‐1‐butene copolymer (EtBC)/methyl tallow bis‐2‐hydroxyethyl quaternary ammonium‐modified montmorillonite (OH‐MMT)/Silane foams with and without maleic anhydride grafted EtBC (EtBC‐g‐MAH) display lower compression set than EVA/EtBC foams. According to the compression set result, OH‐MMT is more effective in improvement of compression set than dimethyl dihydrogenated tallow quaternary ammonium‐modified montmorillonite (DM‐MMT) because in addition of OH groups in the organoclay surface, the OH groups of the alkylammonium ion existed in interlayer of OH‐MMT may react with silanol group of Silane. The possible chemical reactions between Silanol groups of Silane and the hydroxyl groups of OH‐MMT and DM‐MMT were proved by ATR‐FTIR experiments. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers.  相似文献   

3.
Ternary nanocomposites based on poly(butylene terephthalate) (PBT), maleic anhydride grafted poly(ethylene‐co‐vinyl acetate) (EVA‐g‐MAH), and organically modified montmorllonite (organoclays) were prepared through four different blending sequences in a Haake rheocord mixer: (1) To blend PBT, EVA‐g‐MAH and organoclays in one step; (2) First to prepare EVA‐g‐MAH/organoclay nanocomposite, then mix it with PBT to get the final nanocomposite; (3) To mix PBT with organoclays first, then the PBT/organoclay nanocomposite with EVA‐g‐MAH. (4) To mix organoclays with the PBT/EVA‐g‐MAH blend. The microstructure of the PBT/EVA‐g‐MAH/organoclay ternary hybrids was characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). It was found that the blending sequence significantly influences the microstructure of PBT/EVA‐g‐MAH/organoclay ternary hybrids and the dispersion behavior of the organoclays in the polymer matrix. Tensile and impact properties of the hybrids were also studied. The results showed that the mixing sequence (2) gives the best tensile and impact strength due to its fine “sea‐island” morphology of PBT/EVA‐g‐MAH blend and good dispersion of the organoclays in the continuous PBT matrix.  相似文献   

4.
The effects of melt state compounding of ethylene‐butyl acrylate‐maleic anhydride (E‐BA‐MAH) terpolymer and/or three types of organoclays (Cloisite® 15A, 25A, and 30B) on thermal and mechanical properties and morphology of polyamide‐6 are investigated. E‐BA‐MAH formed spherical domains in the materials to which it is added, and increased the impact strength, whereas the organoclays decreased the impact strength. In general, the organoclays increased the tensile strength (except for Cloisite 15A), Young's modulus and elongation at break, but the addition of E‐BA‐MAH had the opposite effect. XRD patterns showed that the interlayer spacing for the organoclays Cloisite 25A and Cloisite 30B increased in both polyamide‐6/organoclay binary nanocomposites and in polyamide‐6/organoclay/impact modifier ternary systems. TEM analysis showed that exfoliated‐intercalated nanocomposites were formed. The crystallinities of polyamide‐6/organoclay nanocomposites were in general lower than that of polyamide‐6 (except for Cloisite 15A). In ternary nanocomposites, crystallinities generally were lower than those of polyamide‐6/organoclay nanocomposites. Cloisite 15A containing ternary nanocomposites had higher tensile and impact strengths and Young's modulus than the ternary nanocomposites prepared with Cloisite 25A and Cloisite 30B, owing to its surface hydrophobicity and compatibility with the impact modifier. POLYM. COMPOS., 2008. © 2007 Society of Plastics Engineers  相似文献   

5.
The main objective of this study is to obtain ethylene‐vinyl acetate copolymer (EVA)/multi‐walled carbon nanotube (MWCNT)/organoclay foams with improved mechanical properties without increase of their density, compared with EVA/MWCNT foams. MWCNT content was fixed at 5 phr in this study. To achieve the objective, EVA was melt‐mixed with MWCNTs and organoclays in a bench kneader. And the obtained EVA/MWCNT/organoclay mixtures were mixed with chemical blowing agent and cross‐linking agent in a two roll‐mill. After being mixed in a two roll‐mill, the mixtures were put in a mold and the foams were obtained by compression‐molding. The effect of organoclay content on the mechanical properties and surface resistivity of EVA/MWCNT (5 phr)/organoclay foams was investigated. The addition of 1 phr organoclays to the EVA/MWCNT (5 phr) foams resulted in the improvement of tensile strength, 100% tensile modulus, tear strength, and compression set without increase of the density. However, further increase in content of organoclay (3 phr) leaded to a deterioration of mechanical properties. Therefore, determining the optimal content of organoclay was very important in order to achieve the main objective of this study. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

6.
In this study, the effect on the degree of organoclay exfoliation in polypropylene‐ethylene (PP‐EP)/Ethylene vinyl acetate (EVA)/organoclay blend system was studied while varying organoclay structural characteristics. Cloisite 6A, Cloisite 15A, Cloisite 20A, Cloisite 25A, Cloisite 30B, Cloisite 93A, and Cloisite 10A were used because they have different type of modifier. Ternary PP‐EP/EVA/organoclay system was obtained with each type of clay and results were organized to analyze the effect of type of clay chemical modification (C20A, C15A, and C6A), steric effect caused by surfactant structure (C15A and C10A), length of substitute groups on the surfactant (C20 and C25A), and surfactant polarity (C30B and C93A). Samples were characterized by: wide angle X‐ray diffraction, scanning transmission electron microscopy (STEM), dynamic mechanical analysis, and capillary rheometry. Results showed that clay galleries can be saturated with chemical modifier complicating the polymer chain intercalation into the clay galleries. Some clay modifier substituent groups could cause certain steric effect promoting less exfoliated platelets structures. Finally, longer chains in the modifier substituent group can promote a better intercalated–exfoliated structure. Among all the studied organoclays, best results were obtained in the ternary system when using C20A, which modifier has two hydrogenated tallows. In this case, interlayer spacing was increased more noticeable after ternary system was formed. This was corroborated with the obtained increase in viscosity and the intercalated–exfoliated structure observed by STEM. POLYM. COMPOS., 35:2241–2250, 2014. © 2014 Society of Plastics Engineers  相似文献   

7.
This study describes the microstructure and thermal and mechanical properties of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHB/HV)–organoclay nanocomposites prepared by melt intercalation using Cloisite 30B, a monotallow bis‐hydroxyethyl ammonium‐modified montmorillonite clay. X‐ray diffractometry and transmission electron microscopy analyses clearly confirm that an intercalated microstructure is formed and finely distributed in the PHB/HV copolymer matrix because PHB/HV has a strong hydrogen bond interaction with the hydroxyl group in the organic modifier of Cloisite 30B. The nanodispersed organoclay also acts a nucleating agent, increasing the temperature and rate of crystallization of PHB/HV; therefore, the thermal stability and tensile properties of the organoclay‐based nanocomposites are enhanced. These results confirm that the organoclay nanocomposite greatly improves the material properties of PHB/HV. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 525–529, 2003  相似文献   

8.
Polyethylene‐octene elastomer (POE)/organoclay nanocomposite was prepared by melt mixing of the POE with an organoclay (Cloisite 20A) in an internal mixer, using poly[ethylene‐co‐(methyl acrylate)‐co‐(glycidyl methacrylate)] copolymer (E‐MG‐GMA) as a compatibilizer. X‐ray diffraction and transmission electron microscopy analysis revealed that an intercalated nanocomposite was formed and the silicate layers of the clay were uniformly dispersed at a nanometre scale in the POE matrix. The nanocomposite exhibited greatly enhanced tensile and dynamic mechanical properties compared with the POE/clay composite without the compatibilizer. The POE/E‐MA‐GMA/clay nanocomposite was used to produce foams by a batch process in an autoclave, with supercritical carbon dioxide as a foaming agent. The nanocomposite produced a microcellular foam with average cell size as small as 3.4 µm and cell density as high as 2 × 1011 cells cm?3. Copyright © 2005 Society of Chemical Industry  相似文献   

9.
Summary: The aim of this study is to examine the effect of the compounding apparatus and of processing conditions on the properties of an organoclay‐poly[ethylene‐co‐(vinyl acetate)] (EVA) nanocomposite. The filled materials were prepared using either a discontinuous batch mixer, a single screw extruder, a counter rotating intermeshing twin‐screw compounder or a corotating intermeshing twin‐screw extruder. The characterization of the obtained nanocomposites was performed by XRD, thermogravimetry, mechanical and rheological measurements. The study has shown the possibility of producing nanocomposites based on EVA and a commercial organoclay (Cloisite 15A) by several mixing equipments. In fact all the prepared composite materials exhibit a larger interlayer clay spacing in comparison with the pristine organoclay. Moreover their elastic modulus is significantly increased from 50 to 100% depending on the processing conditions.

X‐ray diffraction of the master (Sample A) and the clay used for its preparation (Cloisite 15A).  相似文献   


10.
Highly open porous crosslinked styrene/ acrylonitrile (SAN) polymerized high internal phase emulsion (PolyHIPE) foams containing various amounts of acrylonitrile (AN) were prepared by the polymerization of the continuous organic phase of high internal phase emulsions with an 85 vol % aqueous internal phase. The mean diameter of voids varied in the range 12.4–19.8 μm. The void diameter increased up to 10% AN, but beyond this limit, the diameter decreased. To improve the mechanical properties of the copolymer foams, the organic phase of the emulsion containing 20% AN was reinforced with organomontmorillonites with different surface modifiers. The effects of the organoclay on the equilibrium torque value of the emulsifying systems, as an approximate characteristic of the emulsion viscosity, and on the morphology and mechanical properties of the resulting foam were investigated. Scanning electron micrographs exhibited an open‐cell polyHIPE structure for all of the SAN/organoclay polyHIPE foams. The incorporation of organoclays within the emulsion copolymer foam significantly decreased the mean size of voids and intercellular pores compared with those of the copolymer foam without reinforcement. In fact, the presence of organoclay may have acted as a cosurfactant to improve the performance of the nonionic surfactant in the concentrated emulsions. The X‐ray diffraction patterns and transmission electron micrographs showed an intercalated nanocomposite structure for the organoclay‐reinforced copolymer foams. On the other hand, the addition of a more hydrophilic organoclay, that is, 3 wt % Cloisite30B, to the concentrated emulsion decreased the Young's modulus and significantly improved the crush strength of the emulsion copolymer foam. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
A series of polyimide (PI)/organoclay nanocomposite foams containing different contents of organoclay were prepared by the monomer in situ intercalative polymerization. The effect of organoclay on the chemical structure, morphology, mechanical, and thermal properties of the nanocomposite foams was studied. Fourier transform infrared spectra showed that the hydrogen bonds between organoclay and the polymer matrix were formed. X‐ray diffraction and transmission electron microscope results indicated that the organoclay were well dispersed in the PI matrix. The compressive strength and tensile strength of the nanocomposite foams enhanced significantly, especially for the nanocomposite foam containing 4 wt% organoclay, increasing by 15% and 9%, respectively, compared with these of the neat PI foam, and the presence of the organoclay in the PI foam improved apparently the cellular structure of the nanocomposite foams. Besides, thermogravimetric analysis revealed that the addition of organoclay improved the thermal stability of the nanocomposite foams strongly, and dynamic mechanical analysis indicated that the incorporation of organoclay significantly influenced the storage modulus of the nanocomposite foams. POLYM. COMPOS., 35:2311–2317, 2014. © 2014 Society of Plastics Engineers  相似文献   

12.
Morphology and properties of poly(butylene terephthalate) (PBT)/nylon 6 (PA6)/EVA‐g‐MAH ternary blends were investigated. The blends were prepared in a corotating, intermeshing, twin‐screw extruder. The incorporation of maleic anhyride (MAH) grafted onto ethylene‐vinyl acetate copolymer (EVA) (EVA‐g‐MAH) in the PBT/PA6 binary blends decreased the tensile and flexural strength but increased the impact strength, while the mechanical properties of the PBT/PA6 blends were decreased with increasing PA6 content regardless of the presence or absence of the EVA‐g‐MAH. The morphology studies of the ternary blends showed gross phase separation. The rheological properties of the ternary blends suggested that excessively high reactivity between amine end groups of PA6 and MAH grafted onto EVA makes the compatibility between PBT and PA6 worse, although EVA‐g‐MAH was expected to work as a compatibilizer for PBT/PA6 blends. The degree of reactivity between functional groups in PBT, PA6, and EVA‐g‐MAH was also examined by investigating the effect of blending sequence on the properties of the ternary blends.  相似文献   

13.
《Polymer Composites》2017,38(3):431-440
Poly(methyl methacrylate)/polypropylene (PMMA/PP) and PMMA/maleic‐anhydride grafted PP (MAPP) blends and their blend nanocomposites containing 2 wt% organoclay (Cloisite 15A, denoted C15A), prepared by a melt mixer were studied. Both X‐ray diffraction (XRD) and transmission electron microscopy (TEM) revealed exfoliated polymer blend nanocomposites. Scanning electron microscopy (SEM) studies indicated a droplet dispersion morphology for all the blends while addition of C15A into PMMA/MAPP blend resulted to a co‐continuous morphology. In fact, rheological data and thermal properties indicated that the PMMA/MAPP/C15A nanocomposite showed a better homogeneous dispersion of silicate layers than PMMA/PP/C15A nanocomposite. A Cole–Cole plot and relaxation modulus indicated a solid‐like character for PMMA/MAPP and PMMA/MAPP/C15A, while a liquid‐like behavior was noticed for PMMA/PP and PMMA/PP/C15A. The effect of an organoclay on the dynamic mechanical properties of samples was investigated using dynamic mechanical analysis (DMA) which showed a significant enhancement on the storage modulus of the PMMA/MAPP/C15A as compared to PMMA/PP/C15A . POLYM. COMPOS., 38:431–440, 2017. © 2015 Society of Plastics Engineers  相似文献   

14.
Ethylene‐vinyl acetate copolymer (EVA) was melt‐mixed with multiwalled carbon nanotubes (MWCNTs) and organoclays, and the effects of simultaneous use of organoclays and MWCNTs on the surface resistivity and tensile properties of EVA nanocomposites were investigated. The surface resistivity of EVA/MWCNT nanocomposite with 1 phr of MWCNT is out of our measurement range (above 1012 Ω/square). With increasing content of organoclay from 0 to 3 phr, the surface resistivity of the EVA/MWCNT/organoclay nanocomposites with 1 phr MWCNT remains out of our measurement range. However, the surface resistivity of the nanocomposite decreases to 106 Ω/square with addition of 5 phr organoclay. The tensile properties of EVA/MWCNT/organoclay nanocomposites with 1 phr MWCNT and 5 phr organocaly are similar to those of EVA/MWCNT nanocomposites with 5 phr MWCNT except tensile modulus. POLYM. COMPOS. 2012. © 2012 Society of Plastics Engineers  相似文献   

15.
The effect of vinyl acetat (VA) on the morphological, thermal stability, and mechanical properties of heterophasic polypropylene–(ethylene‐propylene) copolymer (PP–EP)/poly(ethylene vinyl acetate) (EVA)/organoclay nanocomposites was studied. Tailored organoclay C20A was selected to enhance the exfoliation of the clay platelets. Depending on the VA content, there were two morphological organoclay populations in the systems. Both populations were directly observed by scanning transmission electron microscopy and measured by wide‐angle X‐ray diffraction and small‐angle X‐ray scattering. The content of VA in EVA originated spherical and elongated morphologies in the resultant nanocomposites. High‐VA content led to a better intercalation of the organoclay platelets. Measurement of thermal properties suggested that higher VA decreases thermal stability in samples both with and without organoclay, although nanocomposites had higher thermal stability than samples without clay. The storage modulus increased both with nanoclay and VA content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
In this article, oxygen barrier properties of nanocomposite films composed of organoclay (OC), high-density polyethylene (HDPE), and ethylene vinyl acetate (EVA) copolymer have been investigated. The nanocomposite films whose EVA forms a dominant fraction were prepared using the solution method. The dispersion of the OC in the HDPE/EVA blend was improved through taking two-step procedure in the preparation of nanocomposite. First, the OC and EVA were dissolved in chloroform. Then, the resulting product, after evaporating most of the solvent, along with HDPE was dissolved in xylene. The obtained nanocomposite films underwent a number of tests in order to examine their barrier properties including X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results showed that OC/HDPE/EVA nanocomposites are intercalated and partially exfoliated. Furthermore, from the TEM micrographs, the organoclay experimental aspect ratio was found. Also, the O2 permeability through the films was evaluated, which showed that adding both OC and HDPE to EVA leads to a remarkable increase in the barrier properties of EVA films. Finally, by using the gas permeation results and existing permeation theories, the organoclay theoretical aspect ratio was predicted. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

17.
In this study, polypropylene (PP) was reinforced using 1 wt% organically modified‐grafted mica (OMGM) and various levels of Cloisite15A (C15A), 0–3 wt%. For OMGM preparation, polypropylene graft maleic anhydride (PP‐g‐MAH) was grafted onto diacetone acryl amid modified mica. The results showed the highest impact strength enhancement of 68% and Young's modulus of 12% for hybrid nanocomposite containing 1 wt% OMGM and 0.5 wt% C15A when compared to neat PP. In order to considerably improve the impact strength of PP with advantage of elastic modulus enhancement, PP was melt blended with above‐mentioned amounts of OMGM and C15A and different contents of ethylene‐1‐butene copolymer (EBR), 0–10 wt%. The dispersion of low‐ and high‐aspect ratio layered silicate tactoids and EBR nanoparticles in the polymer matrix was studied using transmission electron microscopy. The effect of EBR level on the crystallization behavior, tensile properties, impact strength, and fracture toughness of the resultant toughened hybrid nanocomposite was investigated. The presence of EBR nanoparticles did not show any sufficient effect on the melting and crystallization temperatures of the toughened PP and hybrid nanocomposites. However, the impact results indicated that the addition of EBR to neat PP remarkably increased the toughness while sharply decreased its Young's modulus. The incorporation of 7 wt% EBR in the hybrid nanocomposite containing 1 wt% OMGM and 0.5 wt% C15A considerably enhanced impact strength 119% and 30% in comparison to neat PP and its hybrid nanocomposite, respectively. Additionally, the incorporation of EBR nanoparticle in the presence of the silicate layered nanoparticles prevented significant decreasing in Young's modulus of the matrix. J. VINYL ADDIT. TECHNOL., 25:117–126, 2019. © 2018 Society of Plastics Engineers  相似文献   

18.
Nanocomposites based on (70/30) blends of natural rubber (NR), styrene‐butadiene rubber (SBR), and organoclay (OC) have been prepared successfully via melt‐mixing process. Effects of the extent of polymers/clay interactions upon the developed microstructure, fatigue life, and dynamic energy loss by the nanocomposites have been investigated. Maleated EPDM (EPDM‐g‐MAH) and epoxidized NR (ENR50) were employed as compatibilizer. Nanocomposites were characterized by means of X‐ray diffractometer (XRD), transmission electron microscope (TEM), scanning electron microscope, atomic force microscopy, root mean square, and dynamic mechanical thermal analysis. EPDM‐g‐MAH showed more potential in enhancing dispersion of the clay nanolayers and their interaction with rubber phases. More potential for separating and dispersing the clay nanoplatelets with better interface enhancement was exhibited by EPDM‐g‐MAH as compatibilizer. This was consistent with higher resistance towards large strain cyclic deformations along with more heat build‐up characteristics showed by EPDM‐g‐MAH based nanocomposites especially at compatibilizer/organoclay ratio of 3. Pronounced non‐terminal behavior within low frequency region was also observed for melt storage modulus of this nanocomposite, indicating higher extent of intercalation/exfoliation microstructure with reinforced interfaces than the nanocomposite generated by ENR50. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
Wenyi Huang 《Polymer》2006,47(12):4400-4410
The dispersion characteristics and rheology of organoclay nanocomposites based on a main-chain liquid-crystalline polymer having side-chain azopyridine with flexible spacer (PABP) were investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), and oscillatory shear rheometry. In the preparation of nanocomposites via solution blending under vigorous stirring, two commercial organoclays (Southern Clay Products) were employed: one (Cloisite 30B) treated with a surfactant (MT2EtOH) having hydroxyl groups, and the other (Cloisite 20A) treated with a nonpolar surfactant (2M2HT) having hydrogenated tallow. Also prepared, for comparison, were nanocomposites prepared by mixing PABP with natural clay (montmorillonite, MMT). The following observations were made. (i) PABP/Cloisite 30B nanocomposite has featureless XRD patterns and a very high degree of dispersion of Cloisite 30B aggregates as determined from TEM. (ii) PABP/Cloisite 20A nanocomposite has shown a conspicuous XRD reflection peak and intercalation of Cloisite 20A aggregates as determined from TEM. (iii) PABP/MMT nanocomposite has shown XRD patterns, which are virtually the same as the XRD patterns of neat PABP with a slightly increased gallery distance, and it has very poor dispersion of MMT aggregates in the matrix of PABP. The observed high degree of dispersion of Cloisite 30B aggregates in PABP/Cloisite 30B nanocomposite is attributable to the formation of hydrogen bonds between the pyridyl group of side-chain azopyridine and the hydroxyl groups in the surfactant MT2EtOH residing at the surface of Cloisite 30B. The presence of hydrogen bonds in the PABP/Cloisite 30B nanocomposite was confirmed by in situ Fourier transform infrared (FTIR) spectroscopy. It was observed via polarized optical microscopy that the liquid crystallinity of PABP in the PABP/Cloisite 30B nanocomposites was more or less intact with a very high degree of dispersion of Cloisite 30B aggregates. Oscillatory shear flow measurements of the organoclay nanocomposites prepared support the conclusions drawn from XRD, TEM, and FTIR spectroscopy.  相似文献   

20.
Various (low‐density polyethylene)/poly(ethylene‐co‐vinyl acetate) (LDPE/EVA) nanocomposites containing organoclay were prepared by one‐ and two‐step procedures through melt blending. The resultant nanocomposites were then processed via the film blowing method. From the morphological point of view, X‐ray diffraction and optical microscopy studies revealed that although a prevalent intercalated morphology was evident in the absence of EVA, a remarkable increase of organoclay interlayer spacing occurred in the EVA‐containing systems. The advantages of the addition of EVA to the LDPE/organoclay nanocomposites were confirmed in terms of oxygen barrier properties. In other words, the oxygen transmission rates of the LDPE/EVA/organoclay systems were significantly lower than that of the LDPE/organoclay sample. The LDPE/EVA/organoclay films had better mechanical properties than their counterparts lacking the EVA, a result which could be attributed to the improvement of the organoclay reinforcement efficiency in the presence of EVA. Differential scanning calorimetry and thermogravimetric analysis experiments were performed to follow the effects of the EVA and/or organoclay on the thermal properties of LDPE. Finally, the films produced from the two‐step‐procedure compound showed enhanced oxygen barrier properties and mechanical behavior as compared to the properties of the films produced via the one‐step procedure. J. VINYL ADDIT. TECHNOL., 19:132–139, 2013. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号