首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrophobically modified poly[2‐(diethylamino)ethylmethacrylate‐co‐N‐vinyl‐2‐pyrrolidone/octadecyl acrylate) [P(DEAEMA‐co‐NVP/OA)] hydrogels were synthesized by free‐radical crosslinking copolymerization of 2‐(diethylamino)ethylmethacrylate (DEAEMA), N‐vinyl‐2‐pyrrolidone (NVP) with different amounts of hydrophobic comonomer octadecyl acrylate (OA) in tert‐butanol with ethylene glycole dimethacrylate (EGDMA) as a crosslinker. The swelling equilibrium of the hydrogels was investigated as a function of temperature and hydrophobic comonomer content in aqueous solutions of the anionic surfactant sodium dodecyl sulfate (SDS) and the cationic surfactant dodecyltrimethylammonium bromide (DTAB). The results indicated that the swelling behavior and temperature sensitivity of the hydrogels were affected by the type and concentration of surfactant solutions. Additionally, the amount of the adsorbed SDS and DTAB molecules onto the hydrogels was determined by fluorescence measurements. An increase of OA content in the hydrogel caused an increase in the amount of adsorbed surfactant molecules in both media. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3771–3775, 2007  相似文献   

2.
Summary: The swelling and adsorption behavior of a series of hydrophobic poly[(N‐(3‐(dimethylamino)propyl)methacrylamide)‐co‐(lauryl acrylate)] [P(DMAPMA‐co‐LA)] hydrogels was studied as a function of temperature in aqueous solutions of the anionic surfactant sodium dodecyl sulfate (SDS) and the cationic surfactant dodecyltrimethylammonium bromide (DTAB). Between 0 and 41.7 mol‐% of lauryl acrylate (LA) were used as a hydrophobic comonomer in the hydrogel synthesis. In SDS solutions, the equilibrium swelling ratio of the hydrogels decreased with increasing temperature. At SDS concentrations below 0.0083 M , the hydrogels exhibited an almost linear swelling behavior. However, for SDS concentrations above 0.0083 M , non‐linear swelling behavior was observed in the range 28–36 °C. In contrast to the SDS solutions, in all DTAB solutions the equilibrium swelling ratio of the hydrogels increased with increasing temperature and a positive temperature sensitive property was shown for all P(DMAPMA‐co‐LA) hydrogels. The adsorption capacities of the hydrogels in aqueous solutions of SDS and DTAB were determined via surface tension measurements. An increase in the LA content in the hydrogel caused an increase in the amount of adsorbed surfactant molecules in both media.

Effect of the DTAB concentration on the adsorption capacities of P(DMAPMA‐co‐LA) hydrogels.  相似文献   


3.
A pH‐sensitive hydrogel [P(CE‐co‐DMAEMA‐co‐MEG)] was synthesized by the free‐radical crosslinking polymerization of N,N‐dimethylaminoethyl methacrylate (DMAEMA), poly(ethylene glycol) methyl ether methacrylate(MPEG‐Mac) and methoxyl poly(ethylene glycol)‐poly(caprolactone)‐methacryloyl methchloride (PCE‐Mac). The effects of pH and monomer content on swelling property, swelling and deswelling kinetics of the hydrogels were examined and hydrogel microstructures were investigated by SEM. Sodium salicylate was chosen as a model drug and the controlled‐release properties of hydrogels were pilot studied. The results indicated that the swelling ratios of the gels in stimulated gastric fluids (SGF, pH = 1.4) were higher than those in stimulated intestinal fluids (SIF, pH = 7.4), and followed a non‐Fickian and a Fickian diffusion mechanism, respectively. In vitro release studies showed that its release rate depends on different swelling of the network as a function of the environmental pH and DMAEMA content. SEM micrographs showed homogenous pore structure of the hydrogel with open pores at pH 1.4. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40737.  相似文献   

4.
A series of interpenetrating polymer network (IPN) hydrogels having higher swelling ratio (SR) and thermosensitivity were synthesized from sodium acrylate (SA) and N‐isopropyl acrylamide (NIPAAm) by a two‐step method. A series of the porous poly(sodium acrylate ‐co‐1‐vinyl–2‐pyrrolidone) [poly(SA‐co‐VP)], (SV), hydrogels were prepared from acrylic acid having 90% degree of neutralization and VP monomer in the first step. The second step is to immerse the SV dried gels into the NIPAAm solution containing initiator, accelerator, and crosslinker to absorb NIPAAm solution and then polymerized to form the poly(SA‐co‐VP)/poly(NIPAAm) IPN hydrogels (SVN). The effect of the different molar ratios of SA/VP and the content of NIPAAm on the swelling behavior and physical properties of the SVN hydrogels was investigated. Results showed that the SVN hydrogels displayed an obviously thermoreversible behavior when the temperature turns across the critical gel transition temperature (CGTT) of poly(NIPAAm) hydrogel. The pore diameter distributions inside the hydrogel also indicated that the pore sizes inside the SVN hydrogels were smaller than those inside the SV hydrogels. At the same time, the more proportion of SA was added into the hydrogel, the larger pore diameter of the SV hydrogel was formed. The results also showed that the SR decreased with an increase of the VP content in the SV hydrogel and more obviously decreased in the SVN hydrogels. The SVN networks also showed stronger shear moduli than SV hydrogels. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
This article describes the synthesis and swelling behavior of a superabsorbing hydrogel based on sodium alginate (NaAlg) and polyacrylonitrile (PAN). The physical mixture of NaAlg and PAN was hydrolyzed with a solution of NaOH to yield an alginate–poly(sodium acrylate‐co‐acrylamide) [Alg–poly(NaAA‐co‐AAm)] superabsorbent hydrogel. A proposed mechanism for hydrogel formation was suggested, and the structure of the product was established with Fourier transform infrared spectroscopy. The effects of reaction variables were systematically optimized to achieve a hydrogel with a swelling capacity as high as possible. Under the optimized conditions concluded, the maximum capacity of swelling in distilled water was 610 g/g. The absorbency of the synthesized hydrogels was also measured in various salt solutions. The swelling ratios decreased with an increase in the ionic strength of the salt solutions. In addition, the swelling capacity was determined in solutions with pHs ranging from 1 to 13. The Alg–poly(NaAA‐co‐AAm) hydrogel exhibited pH responsiveness, so a swelling–deswelling pulsatile behavior was recorded at pHs 2 and 8. This on–off switching behavior made the hydrogel as a good candidate for the controlled delivery of bioactive agents. Finally, the swelling kinetics of the hydrogels with various particle sizes were preliminarily investigated as well. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2927–2937, 2006  相似文献   

6.
Composite hydrogels of poly(acrylamide‐co‐acrylate) with rice husk ash (RHA) were synthesized and studies of the swelling variables were accomplished comparatively with commercial polyacrylamide gel and PAMACRYL, a poly(acrylamide‐co‐acrylate) hydrogel without RHA. FT‐IR and WAXS were the techniques employed for characterizing a series of hydrogel obtained by varying the percentage of RHA (1, 2, 5, 10, and 20 wt %) and the amount of crosslinking agent (0.05, 0.1, and 0.2 mol %) relative to sum of AAm and AAc. Superabsorbent hydrogel with Weq > 800 g H2O/g gel was obtained with percentage of 10 wt % of RHA and 0.1 of crosslinking agent mol %. The hydrogel showed to be sensitive to the pH variation and to the presence of salts. The hydrogels, even though submitted through cycles of drying and swelling, preserved their superabsorbent characteristics and demonstrated better water absorbance properties when compared with commercial polyacrylamide gel. The composite hydrogels of poly(acrylamide‐co‐acrylate) with RHA presented good characteristics to be applied as soil conditioner for using in agriculture. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
The pH‐sensitive swelling and release behaviors of the anionic P(MAA‐co‐EGMA) hydrogels were investigated as a biological on–off switch for the design of an intelligent drug delivery system triggered by external pH changes. There was a drastic change of the equilibrium weight swelling ratio of P(MAA‐co‐EGMA) hydrogels at a pH of around 5, which is the pKa of poly (methacrylic acid) (PMAA). At a pH below 5, the hydrogels were in a relatively collapsed state but at a pH higher than 5, the hydrogels swelled to a high degree. When the molecular weight of the pendent poly(ethylene glycol) (PEG) of the P(MAA‐co‐EGMA) increased, the swelling ratio decreased at a pH higher than 5. The pKa values of the P(MAA‐co‐EGMA) hydrogels moved to a higher pH range as the pendent PEG molecular weight increased. When the feed concentration of the crosslinker of the hydrogel increased the swelling ratio of the P(MAA‐co‐EGMA) hydrogels decreased at a pH higher than 5. In release experiments using Rhodamine B (Rh‐B) as a model solute, the P(MAA‐co‐EGMA) hydrogels showed a pH‐sensitive release behavior. At low pH (pH 4.0) a small amount of Rh‐B was released while at high pH (pH 6.0) a relatively large amount of Rh‐B was released from the hydrogels. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

8.
Semi‐interpenetrating polymer network hydrogels with different compositions of chitosan (Cs), acrylic acid, and citraconic acid were synthesized via free‐radical polymerization with ethylene glycol dimethacrylate as a crosslinker. The variations of the swelling percentages of the hydrogels with time, temperature, and pH were determined, and Cs–poly(acrylic acid) (PAA) hydrogels were found to be most swollen at pH 7.4 and 37°C. Scanning electron micrographs of Cs–PAA and Cs–P(AA‐co‐CA)‐1 (Cs‐poly(acrylicacid‐co‐citraconir acid)?1) were taken to observe the morphological differences in the hydrogels. Although the less swollen hydrogel, Cs–P(AA‐co‐CA)‐1, had a sponge‐type structure, the most swollen hydrogel, Cs–PAA, displayed a uniform porous appearance. Fluconazole was entrapped in Cs–P(AA‐co‐CA)‐1 and Cs–PAA hydrogels, and the release was investigated at pH 4.0 and 37°C. The kinetic release parameters of the hydrogels (the gel characteristic constant and the swelling exponent) were calculated, and non‐Fickian diffusion was established for Cs–PAA, which released fluconazole much more slowly than the Cs–P(AA‐co‐CA)‐1 hydrogel. A therapeutic range was reached at close to 1 h for both hydrogels. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
A cholic acid (CA)‐containing biodegradable hydrogel (PLA‐PEG‐PLA‐co‐MACAH) was synthesized from the photoinduced copolymerization of a CA‐modified methacrylate monomer (MACAH), bearing a spacer of hexane‐1,6‐diol spacer between the methacryloyl and the cholanoate moieties, and a macromonomer (PLA‐PEG‐PLA‐DA), bearing two acryloyl end groups derived from a poly(lactic acid)‐b‐poly(ethylene glycol)‐b‐poly(lactic acid) triblock copolymer. The structure of MACAH was confirmed by FTIR, 1H‐NMR, and MS. The hydrogel PLA‐PEG‐PLA‐co‐MACAH was characterized by scanning electron microscopy and X‐ray diffraction. The experiment results showed that the swelling ratios of the hydrogels decreased with the increase of the CA fraction. The investigation on the in vitro degradation of the hydrogel showed that the CA‐containing hydrogels degraded much slower than the hydrogels without CA component. The bioactivity of the synthesized hydrogels was assessed by the simulated body fluid method. The observed formation of hydroxyapatite on the scaffold of the hydrogels indicated that the hydrogels possess good bioactivity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
A pH‐sensitive composite hydrogel based on poly(acrylamide‐co‐acrylic acid)/graphite was prepared by solution polymerization process in presence of redox initiator potassium persulfate/N,N,N′,N′‐tetramethylethylenediamine and cross‐linker (ethylene glycol dimethylacrylate). The structures of the hydrogels were confirmed using Fourier transform infrared, X‐ray diffraction, and scanning electron microscopy (SEM) study. Tensile strengths of the hydrogels were determined by using a universal tensile machine, whereas the electrical conductivities of the hydrogels were evaluated using Four‐probe method. The influence of cross‐linker, graphite content, and temperature on the conductivity of the hydrogel was also investigated. The bending behavior of the conducting hydrogels was investigated by exposing the hydrogels under electric field in aqueous medium. By studying the swelling ratio of the polymer synthesized under different conditions, optimization conditions were found for a polymer with the highest swelling ratio. Also, the hemolytic potentiality test revealed that prepared hydrogels are biocompatible in nature. POLYM. COMPOS., 35:27–36, 2014. © 2013 Society of Plastics Engineers  相似文献   

11.
Thermosensitive hydrogels were prepared by free radical polymerization in aqueous solution from N‐isopropylacrylamide (NIPA) monomer and N,N‐methylenebis(acrylamide) (MBAAm) crosslinker. The swelling equilibrium of the hydrogels in deionized water was investigated as a function of temperature and MBAAm content. The results indicated that the swelling behavior and temperature sensitivity of the hydrogels were affected by the amount of MBAAm content. The average molecular mass between crosslinks and polymer–solvent interaction parameter (χ) of the hydrogels were determined from equilibrium swelling values. The swelling variations were explained according to swelling theory based on the hydrogel chemical structure. The swelling equilibrium of the hydrogels was also investigated as a function of temperature in aqueous solutions of the anionic surfactant sodium dodecyl sulfate (SDS) and the cationic surfactant dodecyltrimethylammonium bromide (DTAB). In deionized water, the hydrogels showed a discontinuous volume phase transition at 32°C. In SDS and DTAB solutions, the equilibrium swelling ratio and the volume phase transition temperature (lower critical solution temperature) of the hydrogels increased, which is ascribed to the conversion of nonionic PNIPA hydrogel into polyelectrolyte hydrogels because of binding of surfactant molecules through the hydrophobic interaction. Additionally, the amount of free SDS and DTAB ions was measured at different temperatures by a conductometric method; it was found that the electric conductivity of the PNIPA–surfactant systems depended strongly on both the type and concentration of surfactant solutions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1756–1762, 2006  相似文献   

12.
Novel pH‐sensitive chitosan‐poly(acrylamide‐co‐itaconic acid) hydrogels were prepared by free radical copolymerization of acrylamide and itaconic acid (IA) in chitosan solution. The hydrogels were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry and the swelling ratios of the hydrogels in water (pH 6.8) and pH 1.2. The influence of composition on the thermal properties of the hydrogels was assessed. The glass transition temperatures of the samples increased with IA content, ranging from 110 to 136 °C. Swelling of the hydrogels was found to obey second‐order kinetics with respect to the remnant swelling, indicating that diffusion is controlled by the relaxation of chains. The equilibrium swelling degree was strongly dependent on pH and composition. At both pH values the highest water uptake was obtained for the IA‐free sample M1. From the equilibrium swelling results the average molar mass between crosslinks, Mc, and the crosslink density of the chitosan‐poly(acrylamide‐co‐itaconic acid) samples were calculated. The results evidenced the reinforcing effect of IA on the hydrogel structure. It is concluded that these highly swellable pH‐sensitive hydrogels can be useful for applications in biomedicine and pharmacy. © 2013 Society of Chemical Industry  相似文献   

13.
Octavinyl polyhedral oligomeric silsesquioxane (OVPS) is used as the crosslinker instead of N,N′‐methylenebisacrylamide (BIS) to copolymerize with 2‐(dimethylamino)ethyl methacrylate (DMAEMA) or DMAEMA and N‐isopropylacrylamide (NIPAM) to prepare hybrid hydrogels: P(OVPS‐co‐DMAEMA) and P(OVPS‐co‐DMAEMA‐co‐NIPAM). The prepared hydrogels are transparent and show dual response to temperature and pH. The hydrogels were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis and tensile tests. Their mechanical properties, swelling ratio, deswelling and reswelling behaviors as well as drug release properties were investigated. The results indicate that OVPS can be incorporated into polymer networks in proportion to feed ratios. The P(OVPS‐co‐DMAEMA) hydrogel exhibits more homogeneous interior structure, higher swelling ratio and faster response than the conventional hydrogel prepared with BIS. Moreover, the incorporation of OVPS enhances the compression and tensile properties of the hydrogels. The feed ratios of OVPS and NIPAM have a great effect on volume phase transition temperature, thermal sensitivity, swelling behavior, mechanical properties and drug release properties of the hybrid hydrogels. The prepared dual‐responsive OVPS‐containing hydrogels are expected to be used as biomedical materials in drug release and tissue engineering. © 2014 Society of Chemical Industry  相似文献   

14.
In this paper, attention is paid to synthesis and swelling behavior of a superabsorbent hydrogel based carboxymethylcellulose (CMC) and polyacrylonitrile (PAN). The physical mixture of CMC and PAN was hydrolyzed in NaOH solution to yield hydrogel, CMC–poly(NaAA‐co‐AAm). During alkaline hydrolysis, the nitrile groups of PAN were completely converted to a mixture of hydrophilic carboxamide and carboxylate groups followed by in situ crosslinking of the grafted PAN chains. A proposed mechanism for hydrogel formation was suggested and the structure of the product was established using FTIR spectroscopy. The reaction variables affecting the swelling capacity of the hydrogel were systematically optimized to achieve a hydrogel with swelling capacity as high as possible. Swelling measurements of the synthesized hydrogels in various chloride salt solutions indicated a swelling‐loss with increase in the ionic strength of the salt solutions. The pH of the various solutions also affected the swelling of the superabsorbent. Furthermore, the present hydrogels showed a pH‐reversible property. Finally, the swelling kinetics of synthesized hydrogels with various absorbent particle sizes was briefly examined. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Polyelectrolyte hydrogels were synthesized from N,N‐dimethylacrylamide, acrylamide, and itaconic acid with ammonium persulfate as a free‐radical initiator in the presence of methylene(bis)acrylamide as a crosslinker. The swelling behavior of the ionic poly(N,N‐dimethylacrylamide‐co‐acrylamide) hydrogels was investigated in pure water, in KSCN solutions with pHs 4 and 9, and in water–acetone mixtures according to the itaconic acid content in the hydrogel. The pulsatile swelling behavior of these hydrogels was studied both in water–acetone and in pH 2–9 buffer solutions. Although the equilibrium swelling ratio of the hydrogels with low concentrations of itaconic acid was almost not affected by changes in the temperature, the equilibrium swelling ratio of the hydrogels with high concentrations of itaconic acid increased in the temperature range of 20–50°C. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2140–2145, 2007  相似文献   

16.
In this study, a series of poly(acrylamide‐co‐acrylic acid‐co‐2‐hydroxy ethyl actylate) [AM‐co‐AA‐co‐HEA] hydrogels have been synthesized by varying the acrylic acid (AA)content over eightfold in feed in the range of 33.34–93.76% by keeping other monomer constant. These hydrogels were characterized by FTIR, SEM analysis, elemental analysis, residual acrylic acid analysis, network parameters, and dynamic swelling behavior. The swelling study showed that equilibrium swelling ratio was nonlinearly increased with increasing AA content. Interestingly, the equilibrium swelling ratio decreased from 53.42 to 48.52 for 75–80% AA content hydrogel. The swelling data were found to satisfactorily fit Fick's second law, demonstrating that diffusion rate of water uptake was primarily Fickian. From model fitting, it was observed that early model was applicable for first 30% water absorption, and late model was applicable for latter 70% water absorption for increasing AA content from 33.34–90.90%. For 93.76% AA, early‐time model was extended up to first 50% of water absorption and late model was contracted for latter 50% water absorption, indicating that excessive AA content affects the applicability range of early‐time and late‐time diffusion models for water absorption. Etters model was best applicable to all type of hydrogels and followed over all swelling range. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
To achieve the injectable hydrogel system in order to improve bone regeneration by locally delivering a protein drug including bone morphogenetic proteins, thermo‐responsive injectable hydrogels composed of N‐isopropylacrylamide (NIPAAm) and vinyl phosphonic acid (VPAc) were prepared. The P(NIPAAm‐co‐VPAc) hydrogels were also biomineralized by urea‐mediation method to create functional polymer hydrogels that deliver the protein drug and mimic the bone extracellular matrix. The loosely cross‐linked P(NIPAAm‐co‐VPAc) hydrogels were pliable and fluid‐like at room temperature and could be injected through a small‐diameter aperture. The lower critical solution temperature (LCST) of P(NIPAAm‐co‐VPAc) hydrogel was influenced by the monomer ratio of NIPAAm/VPAc and the hydrogel with a 96/4 molar ratio of NIPAAm/VPAc exhibited an LCST of ~34.5°C. Water content was influenced by temperature, NIPAAm/VPAc monomer ratio, and biomineralization; however, all hydrogels maintained more than about 77% of the water content even at 37°C. In a cytotoxicity study, the P(NIPAAm‐co‐VPAc) and biomineralized P(NIPAAm‐co‐VPAc) hydrogels did not significantly affect cell viability. The loading content of bovine serum albumin in hydrogel, which was used as a model drug, gradually increased with the amount of VPAc in the hydrogel owing to the ionic interaction between VPAc groups and BSA molecules. In addition, the release behavior of BSA from the P(NIPAAm‐co‐VPAc) hydrogels was mainly influenced by the drug loading content, water content, and biomineralization of the hydrogels. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
In this study, N‐vinylpyrrolidone(VP)/methacrylic acid (MAA) mixtures have been prepared at three different mole percents which the methacrylic acid composition around 5, 10, and 15%. Poly(N‐vinylpyrrolidone‐co‐methacrylicacid) P(VP/MAA) hydrogels irradiated at 3.4 kGy have been used for swelling and diffusion studies in water and uranyl ion solutions. The influence of dose, pH, relative amounts of monomers in MAA/VP monomer mixtures on the swelling properties have been investigated. P(VP/MAA) hydrogels were swollen in distilled water at pH 7.0. P(VP/MAA)1 hydrogel containing 36% (mole percent) methacrylic acid showed the maximum percent swelling in water. Adsorption isotherms were constructed for uranyl ions and P(VP/MAA) hydrogel systems. It has been found that P(VP/MAA) hydrogels have very high uptake of the uranyl ions succesfully in water containing uranyl ions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Environmentally sensitive hydrogels responsive to various stimuli such as temperature, pH, ionic strength of the medium and the solvent were prepared by using N‐isopropyl acrylamide (NIPAM), acrylamide (AAm) and monomers that have various number of carboxylic acid (XA) functionality using N,N′‐methylene bisacrylamide (Bis) as crosslinker. Hydrogels were prepared via free radical polymerization reaction in aqueous solution. P(NIPAAm‐co‐AAm) and p(NIPAAm‐co‐AAm)/XA hydrogels that contain monoprotic crotonic acid (CA) exhibit a lover critical solution temperature (LCST) at 28°C, whereas p(NIPAAm‐co‐AAm)/IA (IA:itaconic acid), and P(NIPAAm‐co‐AAm)/ACA (ACA:acotonic acid) hydrogels exhibit a lover critical solution temperature at 30.7°C and 34.4°C, respectively. Spectroscopic and thermal analyses were performed for the structural and thermal characterizations of the prepared hydrogel. The swelling experiments as equilibrium swelling percentages by gravimetrically were carried out in different solvents, at different solutions temperature, pH, and ionic strengths to determine their effects on swelling characteristic of hydrogels. POLYM. ENG. SCI., 55:843–851, 2015. © 2014 Society of Plastics Engineers  相似文献   

20.
Summary: Polyelectrolyte hydrogels containing diprotic acid moieties sensitive to ionic strength changes of the swelling medium were synthesized from N,N‐diethylaminoethyl methacrylate (DEAEMA), N‐vinyl‐2‐pyrrolidone (VP) and itaconic acid (IA) by using ammonium persulfate (APS) as a free radical initiator in the presence of the cross‐linker, methylenebisacrylamide (MBAAm). The swelling behavior of the ionic poly[(N,N‐diethylaminoethyl methacrylate)‐co‐(N‐vinyl‐2‐pyrrolidone)] [P(DEAEMA/VP)] hydrogels were investigated in pure water; in NaCI solutions with pH 4 and 9; and in water‐acetone mixtures depending on the IA content in the hydrogel. The average molecular mass between cross‐links ( ) and polymer‐solvent interaction parameter (χ) of the hydrogels were determined from equilibrium swelling values. The pulsatile swelling behavior was also observed in response to solvent changes between the solution in water and in acetone. The equilibrium swelling ratio of these hydrogels was basically unaffected with change in temperature. The swelling variations were explained according to the swelling theory based on the hydrogel chemical structure.

Pulsatile swelling behavior of ionic P(DEAEMA/VP) hydrogels in response to solvent changes between water and acetone at 25 °C.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号