首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The phase behavior and the crystallization kinetics of blends composed of isotactic polypropylene (iPP) and linear low‐density polyethylene (LLDPE) were investigated by differential scanning calorimetry. The phase behavior indicates the formation of separate crystals of iPP and LLDPE at each investigated blend composition. The crystallization trace reveals that iPP crystallizes in its normal range of temperatures (i.e., at temperatures higher than that of LLDPE), when its content in the blend is higher than 25% by weight. In the blend whose iPP content is as high as 25%, at least a portion of iPP crystallizes at temperatures lower than that of LLDPE. This behavior has been proposed by Bassett to be attributed to a change in the kind of nucleation from heterogeneous to homogeneous. From the Avrami analysis of the isothermal crystallization of iPP in the presence of molten LLDPE, n values close to 2 are always obtained. According to our previously proposed interpretation of the Avrami coefficient, it can be related to the crystallite fractal dimension, through d = n + 1, which gives values close to 3, according to the spherulitic observed morphology. The kinetics parameter, i.e., the half‐time of crystallization, and the kinetic constant k show that a decrease in the overall rate of crystallization of iPP occurs on blending. Optical microscopy photographs, taken during the cooling of the samples from the melt, confirm the above results and show increasingly less resolved spherulite texture on increasing LLDPE content in the blend. The diffusion parameters evaluated for the neat polymers and for the blends in dichloromethane, which give information on the miscibility in the amorphous state, show that the diffusional behavior of the blends is governed by iPP, suggesting a two‐phase amorphous state. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3338–3346, 2003  相似文献   

2.
The effect of the branch content (BC) and composition distribution (CD) of linear low‐density polyethylene (LLDPE) on the thermal and mechanical properties of its blends with LDPE were studied. All blends and pure resins were conditioned in a Haake PolyDrive blender at 190°C and in the presence of adequate amounts of antioxidant. Two metallocene LLDPEs (m‐LLDPE) and one Ziegler–Natta (ZN) hexene LLDPE were melt blended with the same LDPE. The effect of the BC was investigated by blending two hexene m‐LLDPEs of similar weight‐average molecular weights and molecular weight distributions but different BCs with the same LDPE. The effect of the CD was studied by using a ZN and an m‐LLDPE with similar weight‐average molecular weights, BCs, and comonomer type. Low‐BC m‐LLDPE blends showed separate crystallization whereas cocrystallization was observed in the high‐BC m‐LLDPE‐rich blends. However, ZN‐LLDPE/LDPE blends showed separate crystallization together with a third population of cocrystals. The influence of the crystallization behavior was reflected in the mechanical properties. The BC influenced the modulus, ultimate tensile strength, and toughness. The addition of a small amount of LDPE to a low‐BC m‐LLDPE resulted in a major improvement in the toughness, whereas the results for the high‐BC pair followed the additivity rule. ZN‐LLDPE blends with LDPE blends were found to be more compatible and exhibited superior mechanical properties compared to m‐LLDPE counterparts with the same weight‐average molecular weight and BC. All mechanical properties of ZN‐LLDPE blends follow the linear rule of mixtures. However, the CD had a stronger influence on the mechanical properties in comparison to the BC. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2488–2498, 2005  相似文献   

3.
Isothermal crystallization kinetics of low‐density polyethylene (LDPE) were measured from 96°C‐103°C using a power‐compensating differential scanning calorimetry (DSC). Crystallization kinetics were measured using different sample thicknesses and on samples compounded with nickel, a filler with high thermal conductivity. For the unfilled material, sample thickness and temperature had a significant effect on the rate of crystallization as measured by the Avrami rate constant K, but had no effect on the nucleation mechanism and dimensionality of growth, as measured by the Avrami constant n. The crystallization growth rate as expressed by K1/n scaled approximately with the thickness of the sample. For the filled material, K was much higher and independent of nickel content, suggesting a limiting growth rate for polyethylene at a given temperature in this equipment. The dependence of crystallization rale on sample thickness indicates that barriers to heat transfer can be important. This work shows that for most crystallization rates, thermal conductivity, rather than interfacial resistance between sample and pan, limits heat transfer. Even though thermal conductivity typically dominates heat‐transfer resistance, sample‐pan thermal contact is still important, and some guidelines are given to determine whether good contact is being made.  相似文献   

4.
The crystallization behavior of low‐density polyethylene (LDPE) embedded inside zinc oxide (ZnO) percolating network (LDPE/60 vol% ZnO) was investigated via differential scanning calorimetry (DSC), and compared with those of LDPE bulks (neat LDPE and LDPE/1.15 vol% ZnO). Results revealed that embedded LDPE possessed by far shorter half‐crystallization time at elevated crystallization temperatures than LDPE bulks, whereas at lower crystallization temperatures longer half‐crystallization time was observed. Isothermal crystallization kinetics study revealed that the Avrami exponent of embedded LDPE varied in range of 1.8–2.0, indicating quasi‐two‐dimensional crystallization with heterogeneous nucleation, contrasting with about 3 for LDPE bulks. Moreover, crystallization activation energy of embedded LDPE was much larger than that of neat LDPE due to geometric confinement effect of ZnO network. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

5.
Morphology and rheological properties of low‐density polyethylene/linear low‐density polyethylene/thermoplastic starch (LDPE/LLDPE/TPS) blends are experimentally investigated and theoretically analyzed using rheological models. Blending of LDPE/LLDPE (70/30 wt/wt) with 5–20 wt % of TPS and 3 wt % of PE‐grafted maleic anhydride (PE‐g‐MA) as a compatibilizer is performed in a twin‐screw extruder. Scanning electron micrographs show a fairly good dispersion of TPS in PE matrices in the presence of PE‐g‐MA. However, as the TPS content increases, the starch particle size increases. X‐ray diffraction patterns exhibit that with increase in TPS content, the intensity of the crystallization peaks slightly decreases and consequently crystal sizes of the blends decrease. The rheological analyses indicate that TPS can increase the elasticity and viscosity of the blends. With increasing the amount of TPS, starch particles interactions intensify and as a result the blend interface become weaker which are confirmed by relaxation time spectra and the prediction results of emulsion Palierne and Gramespacher‐Meissner models. It is demonstrated that there is a better agreement between experimental rheological data and Coran model than the emulsion models. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44719.  相似文献   

6.
Nonisothermal crystallization kinetics of the blends of three ethylene–butene copolymers with LDPE was studied using differential scanning calorimetry (DSC) and kinetic parameters such as the Avrami exponent and the kinetic crystallization rate (Zc) were determined. It was found that the pure components and the blends have similar Avrami exponents, indicating the same crystallization mechanism. However, the crystallization rate of the blends was greatly influenced by LDPE. The Zc of all the blends first increases with increasing LDPE content in the blends and reaches its maximum, then descends as the LDPE content further increases. The crystallization rate also depends on the short‐chain branching distribution (SCBD) of the ethylene–butene copolymers. The Zc of the pure component with a broad SCBD is smaller, but its blends have a larger crystallization rate due to losing highly branched fractions after blending with LDPE. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 123–129, 2001  相似文献   

7.
Linear low‐density polyethylene (LLDPE)/sepiolite nanocomposites were prepared by melt blending using unmodified and silane‐modified sepiolite. Two methods were used to modify sepiolite: modification before heat mixing (ex situ) and modification during heat mixing (in situ). The X‐ray diffraction results showed that the position of the main peak of sepiolite remained unchanged during modification step. Infrared spectra showed new peaks confirming the development of new bonds in modified sepiolite and nanocomposites. SEM micrographs revealed the presence of sepiolite fibers embedded in polymer matrix. Thermogravimetric analysis showed that nanocomposites exhibited higher onset degradation temperature than LLDPE. In addition, in situ modified sepiolite nanocomposites exhibited higher thermal stability than ex situ modified sepiolite nanocomposites. The ultimate tensile strength and modulus of the nanocomposites were improved; whereas elongation at break was reduced. The higher crystallization temperature of some nanocomposite formulations revealed a heterogeneous nucleation effect of sepiolite. This can be exploited for the shortening of cycle time during processing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
The crystallization of a series of low‐density polyethylene (LDPE)‐ and linear low‐density polyethylene (LLDPE)‐rich blends was examined using differential scanning calorimetry (DSC). DSC analysis after continuous slow cooling showed a broadening of the LLDPE melt peak and subsequent increase in the area of a second lower‐temperature peak with increasing concentration of LDPE. Melt endotherms following stepwise crystallization (thermal fractionation) detailed the effect of the addition of LDPE to LLDPE, showing a nonlinear broadening in the melting distribution of lamellae, across the temperature range 80–140°C, with increasing concentration of LDPE. An increase in the population of crystallites melting in the region between 110 and 120°C, a region where as a pure component LDPE does not melt, was observed. A decrease in the crystallite population over the temperature range where LDPE exhibits its primary melting peaks (90–110°C) was noted, indicating that a proportion of the lamellae in this temperature range (attributed to either LDPE or LLDPE) were shifted to a higher melt temperature. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1009–1016, 2000  相似文献   

9.
The present study investigated mixed polyolefin compositions with the major component being a post‐consumer, milk bottle grade high‐density polyethylene (HDPE) for use in large‐scale injection moldings. Both rheological and mechanical properties of the developed blends are benchmarked against those shown by a currently used HDPE injection molding grade, in order to find a potential composition for its replacement. Possibility of such replacement via modification of recycled high‐density polyethylene (reHDPE) by low‐density polyethylene (LDPE) and linear‐low‐density polyethylene (LLDPE) is discussed. Overall, mechanical and rheological data showed that LDPE is a better modifier for reHDPE than LLDPE. Mechanical properties of reHDPE/LLDPE blends were lower than additive, thus demonstrating the lack of compatibility between the blend components in the solid state. Mechanical properties of reHDPE/LDPE blends were either equal to or higher than calculated from linear additivity. Capillary rheological measurements showed that values of apparent viscosity for LLDPE blends were very similar to those of the more viscous parent in the blend, whereas apparent viscosities of reHDPE/LDPE blends depended neither on concentration nor on type (viscosity) of LDPE. Further rheological and thermal studies on reHDPE/LDPE blends indicated that the blend constituents were partially miscible in the melt and cocrystallized in the solid state.  相似文献   

10.
Nonisothermal crystallization kinetics of linear bimodal–polyethylene (LBPE) and the blends of LBPE/low‐density polyethylene (LDPE) were studied using DSC at various scanning rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the nonisothermal crystallization process of LBPE and LBPE/LDPE blends. The theory of Ozawa was also used to analyze the LBPE DSC data. Kinetic parameters such as, for example, the Avrami exponent (n), the kinetic crystallization rate constant (Zc), the crystallization peak temperature (Tp), and the half‐time of crystallization (t1/2) were determined at various scanning rates. The appearance of double melting peaks and double crystallization peaks in the heating and cooling DSC curves of LBPE/LDPE blends indicated that LBPE and LDPE could crystallize, respectively. As a result of these studies, the Zc of LBPE increases with the increase of cooling rates and the Tp of LBPE for LBPE/LDPE blends first increases with increasing LBPE content in the blends and reaches its maximum, then decreases as the LBPE content further increases. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2431–2437, 2003  相似文献   

11.
Noncrosslinking linear low‐density polyethylene‐grafted acrylic acid (LLDPE‐g‐AA) was prepared by melt‐reactive extrusion in our laboratory. The thermal behavior of LLDPE‐g‐AA was investigated by using differential scanning calorimetry (DSC). Compared with neat linear low‐density polyethylene (LLDPE), melting temperature (Tm) of LLDPE‐g‐AA increased a little, the crystallization temperature (Tc) increased about 4°C, and the melting enthalpy (ΔHm) decreased with an increase in acrylic acid content. Isothermal crystallization kinetics of LLDPE and LLDPE‐g‐AA samples were carried out by using DSC. The overall crystallization rate of LLDPE was smaller than that of grafted samples. It showed that the grafted acrylic acid monomer onto LLDPE acted as a nucleating agent. Crystal morphologies of LLDPE‐g‐AA and LLDPE were examined by using SEM. Spherulite sizes of LLDPE‐g‐AA samples were lower than that of LLDPE. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2626–2630, 2002  相似文献   

12.
In this work, perfluoroalkylmethacrylate ester (PFAMAE)‐grafted‐linear low‐density polyethylene (LLDPE) was synthesized by UV‐induced surface graft polymerization. The effect of PFAMAE‐grafted‐LLDPE on the tribological behavior of LLDPE‐filled polyoxymethylene (POM) composite was investigated using a friction and abrasion testing machine. The results showed that LLDPE‐g‐PFAMAE was a more effective modifier in improving tribological property of LLDPE‐filled POM composite than conventional maleic anhydride‐grafted‐polyethylene (PE‐g‐MAH). POM/LLDPE composite possessed much lower friction coefficient but higher wear rate than pristine POM. The incorporation of LLDPE‐g‐PFAMAE into POM/LLDPE further decreased the friction coefficient, which was 45% lower than that of POM. The wear rate of POM/LLDPE/LLDPE‐g‐PFAMAE composite was also reduced and was lower than that of pristine POM. The primary wear mechanisms of POM/LLDPE composite with and without LLDPE‐g‐PFAMAE were adhesive and abrasive wear. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

13.
The dynamic rheological behavior of low‐density polyethylene (LDPE)/ultra‐high‐molecular‐weight polyethylene (UHMWPE) blends and linear low‐density polyethylene (LLDPE)/UHMWPE blends was measured in a parallel‐plate rheometer at 180, 190, and 200°C. Analysis of the log–additivity rule, Cole–Cole plots, Han curves, and Van Gurp curves of the LDPE/UHMWPE blends indicated that the blends were miscible in the melt. In contrast, the rheological properties of LLDPE/UHMWPE showed that the miscibility of the blends was decided by the composition of LLDPE. The differential scanning calorimetry results and scanning electron microscopy photos of the LLDPE/UHMWPE blends were consistent with the rheological properties, whereas with regard to the thermal and morphological properties of LDPE/UHMWPE blends, the results reveal three endothermic peaks and phase separation, which indicated a liquid–solid phase separation in the LDPE/UHMWPE blends. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
The viability of the thermomechanical recycling of postconsumer milk pouches [a 50 : 50 low‐density polyethylene/linear low‐density polyethylene (LDPE–LLDPE) blend] and their use as polymeric matrices for coir‐fiber‐reinforced composites were investigated. The mechanical, thermal, morphological, and water absorption properties of recycled milk pouch polymer/coir fiber composites with different treated and untreated fiber contents were evaluated and compared with those of virgin LDPE–LLDPE/coir fiber composites. The water absorption of the composites measured at three different temperatures (25, 45, and 75°C) was found to follow Fickian diffusion. The mechanical properties of the composites significantly deteriorated after water absorption. The recycled polymer/coir fiber composites showed inferior mechanical performances and thermooxidative stability (oxidation induction time and oxidation temperature) in comparison with those observed for virgin polymer/fiber composites. However, a small quantity of a coupling agent (2 wt %) significantly improved all the mechanical, thermal, and moisture‐resistance properties of both types of composites. The overall mechanical performances of the composites containing recycled and virgin polymer matrices were correlated by the phase morphology, as observed with scanning electron microscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

15.
A poly(butylene terephthalate) (PBT)/linear low‐density polyethylene (LLDPE) alloy was prepared with a reactive extrusion method. For improved compatibility of the blending system, LLDPE grafted with acrylic acid (LLDPE‐g‐AA) by radiation was adopted in place of plain LLDPE. The toughness and extensibility of the PBT/LLDPE‐g‐AA blends, as characterized by the impact strengths and elongations at break, were much improved in comparison with the toughness and extensibility of the PBT/LLDPE blends at the same compositions. However, there was not much difference in their tensile (or flexural) strengths and moduli. Scanning electron microscopy photographs showed that the domains of PBT/LLDPE‐g‐AA were much smaller and their dispersions were more homogeneous than the domains and dispersions of the PBT/LLDPE blends. Compared with the related values of the PBT/LLDPE blends, the contents and melting temperatures of the usual spherulites of PBT in PBT/LLDPE‐g‐AA decreased. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1059–1066, 2002; DOI 10.1002/app.10399  相似文献   

16.
Light converting greenhouse films are novel plastic films for agriculture. In this study, 4‐methoxy‐N‐allyl‐1,8‐naphthalimide (MOANI) was grafted onto linear low‐density polyethylenes (LLDPE‐g‐MOANI) by melt reactive mixing. The effects of monomer concentration, chamber temperature, and reaction time on grafting degree were systematically studied. Evidence of the grafting reaction was determined by 1HNMR, FTIR, UV–Vis, and fluorescence spectrometry. Dynamic rheological properties, isothermal crystallization kinetics, surface morphologies of LLDPE, LLDPE‐g‐MOANI, and blends of LLDPE and MOANI (LLDPE/MOANI) were also analyzed. In addition, mechanical and fluorescent properties of unpurified LLDPE‐g‐MOANI films were further studied after the UV condensation weathering and acceleration migration test, respectively. We demonstrated that the cross‐linking of LLDPE could be inhibited effectively by the graft of MOANI; the grafted MOANI acted as a nucleation agent to accelerate crystallization; the grafted MOANI effectively inhibited the aging process of LLDPE and the migration of free MOANI to the surface of the unpurified LLDPE‐g‐MOANI film. The modified LLDPE showed the potential application in long‐term light converting films. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42172.  相似文献   

17.
The degradation of different polyethylenes—low‐density polyethylene (LDPE), linear low‐density polyethylene (LLDPE), and high‐density polyethylene (HDPE)—with and without antioxidants and at different oxygen concentrations in the polymer granulates, have been studied in extrusion coating processing. The degradation was followed by online rheometry, size exclusion chromatography, surface oxidation index measurements, and gas chromatography–mass spectrometry. The degradations start in the extruder where primary radicals are formed, which are subject to the auto‐oxidation when oxygen is present. In the extruder, crosslinking or chain scissions reactions are dominating at low and high melt temperatures, respectively, for LDPE, and chain scission is overall dominating for the more linear LLDPE and HDPE resins. Additives such as antioxidants react with primary radicals formed in the melt. Degradation taking place in the film between the die orifice, and the quenching point is mainly related to the exposure time to air oxygen. Melt temperatures above 280°C give a dominating surface oxidation, which increases with the exposure time to air between die orifice and quenching too. A number of degradation products were identified—for example, aldehydes and organic acids—which were present in homologous series. The total amount of aldehydes and acids for each number of chain carbon atoms were appeared in the order of C5>C4>C6>C7?C2 for LDPE, C5>C6>C4>C7?C2 for LLDPE, and C5>C6>C7>C4?C2 for HDPE. The total amounts of oxidized compounds presented in the films were related to the processing conditions. Polymer melts exposed to oxygen at the highest temperatures and longest times showed the presence dialdehydes, in addition to the aldehydes and acids. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1525–1537, 2004  相似文献   

18.
Blends of linear‐low‐density polyethylene (LLDPE), low‐density polyethylene (LDPE), and high‐ density polyethylene (HDPE) were foamed and characterized in this research. The goal was to generate clear dual peaks from the expanded polyethylene (EPE) foam beads made from these blends in autoclave processing. Three blends were prepared in a twin‐screw mixing extruder at two rotational speeds of 5 and 50 rpm: Blend1 (LLDPE with 20 wt% HDPE), Blend 2 (LLDPE with 20 wt% LDPE), and Blend 3 (LLDPE with 10 wt% HDPE and 10 wt% LDPE). The differential scanning calorimetric (DSC) measurement was taken at two cooling rates: 5 and 50°C/min. Although no dual peaks were present, the results showed that blending with HDPE has a more noticeable effect on the DSC curve of LLDPE than blending with LDPE. Also, the rotational speed and cooling rate affected the shape of the DSC curves and the percentage area below the onset point. The DSC characterization of the batch foamed blends revealed multiple peaks at certain temperatures, which may be mainly due to the annealing effect during the gas saturation process. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

19.
The thermal and mechanical properties of uncrosslinked three‐component blends of linear low‐density polyethylene (LLDPE), low‐density polyethylene (LDPE), and a hard, paraffinic Fischer–Tropsch wax were investigated. A decrease in the total crystallinity with an increase in both LDPE and wax contents was observed. It was also observed that experimental enthalpy values of LLDPE in the blends were generally higher than the theoretically expected values, whereas in the case of LDPE the theoretically expected values were higher than the experimental values. In the presence of higher wax content there was a good correlation between experimental and theoretically expected enthalpy values. The DSC results showed changes in peak temperature of melting, as well as peak width, with changing blend composition. Most of these changes are explained in terms of the preferred cocrystallization of wax with LLDPE. Young's modulus, yield stress, and stress at break decreased with increasing LDPE content, whereas elongation at yield increased. This is in line with the decreasing crystallinity and increasing amorphous content expected with increasing LDPE content. Deviations from this behavior for samples containing 10% wax and relatively low LDPE contents are explained in terms of lower tie chain fractions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1748–1755, 2005  相似文献   

20.
The effects of the filler content and the filler size on the crystallization and melting behavior of glass bead‐filled low‐density polyethylene (LDPE) composites have been studied by means of a differential scanning calorimeter (DSC). It is found that the values of melting enthalpy (ΔHc) and degree of crystallinity (xc) of the composites increase nonlinearly with increasing the volume fraction of glass beads, ϕf, when ϕf is greater than 5%; the crystallization temperatures (Tc) and the melting temperatures (Tm) of the composites are slightly higher than those of the pure LDPE; the effects of glass bead size on xc, Tc, and Tm are insignificant at lower filler content; but the xc for the LDPE filled with smaller glass beads is obviously greater than that of the filled system with bigger ones at higher ϕf. It suggests that small particles are more beneficial to increase in crystallinity of the composites than big ones, especially at higher filler content. In addition, the influence of the filler surface pretreated with a silane coupling agent on the crystallization behavior are not too outstanding at lower inclusion concentration. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 687–692, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号