首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N‐Trimellitylimido‐L ‐leucine was reacted with thionyl chloride, and N‐trimellitylimido‐L ‐leucine diacid chloride was obtained in a quantitative yield. The reaction of this diacid chloride with p‐aminobenzoic acid was performed in dry tetrahydrofuran, and bis(p‐amidobenzoic acid)‐N‐trimellitylimido‐L ‐leucine (5) was obtained as a novel optically active aromatic imide–amide diacid monomer in a high yield. The direct polycondensation reaction of the monomer imide–amide diacid 5 with 4,4′‐diaminodiphenylsulfone, 4,4′‐diaminodiphenylether, 1,4‐phenylenediamine, 1,3‐phenylenediamine, 2,4‐diaminotoluene, and benzidine (4,4′‐diaminobiphenyl) was carried out in a medium consisting of triphenyl phosphite, N‐methyl‐2‐pyrolidone, pyridine, and calcium chloride. The resulting novel poly(amide imide)s (PAIs), with inherent viscosities of 0.22–0.52 dL g?1, were obtained in high yields, were optically active, and had moderate thermal stability. All of the compounds were fully characterized with IR spectroscopy, elemental analyses, and specific rotation. Some structural characterization and physical properties of these new optically active PAIs are reported. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 35–43, 2002; DOI 10.1002/app.10181  相似文献   

2.
Pyromellitic dianhydride (1,2,4,5‐benzenetetracarboxylic acid 1,2,4,5‐dianhydide) was reacted with L ‐valine in a mixture of acetic acid and pyridine (3:2) at room temperature, and then was refluxed at 90–100 °C, N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid was obtained in quantitative yield. The imide–acid was converted to N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid chloride by reaction with thionyl chloride. Rapid and highly efficient synthesis of a number of poly(amide–imide)s was achieved under microwave irradiation using a domestic microwave oven by polycondensation of N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid chloride with six different derivatives of 5,5‐disubstituted hydantoin compounds in the presence of a small amount of a polar organic medium that acts as a primary microwave absorber. A suitable organic medium was o‐cresol. The polycondensation proceeded rapidly, compared with conventional melt polycondensation and solution polycondensation and was almost completed within 8 min, giving a series of poly(amide–imide)s with inherent viscosities in the range 0.15–0.36 dl g?1. The resulting poly(amide–imide)s were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by Fourier‐transform infrared (FT‐IR) spectroscopy, elemental analysis, inherent viscosity (ηinh) measurements, solubility testing and specific rotation measurements. The thermal properties of the poly(amide–imide)s were investigated by using thermogravimetric analysis. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
Pyromellitic dianhydride (1,2,4,5‐benzenetetracarboxylic acid 1,2,4,5‐dianhydide) (1) was reacted with L‐phenylalanine (2) in a mixture of acetic acid and pyridine (3 : 2) at room temperature, then was refluxed at 90–100°C and N,N′‐(Pyromellitoyl)‐bis‐L ‐phenylalanine diacid (3) was obtained in quantitative yield. The imide‐acid (3) was converted to N,N′‐(Pyromellitoyl)‐bis‐L ‐phenylalanine diacid chloride (4) by reaction with thionyl chloride. Rapid and highly efficient synthesis of poly(amide‐imide)s (6a–f) was achieved under microwave irradiation by using a domestic microwave oven from the polycondensation reactions of N,N′‐(Pyromellitoyl)‐bis‐L ‐phenylalanine diacid chloride (4) with six different derivatives of 5,5‐disubstituted hydantoin compounds (5a–f) in the presence of a small amount of a polar organic medium that acts as a primary microwave absorber. Suitable organic media was o‐cresol. The polycondensation proceeded rapidly, compared with the conventional melt polycondensation and solution polycondensation, and was almost completed within 10 min, giving a series of poly(amide‐imide)s with inherent viscosities about 0.28–0.44 dL/g. The resulting poly(amide‐imide)s were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by means of FTIR spectroscopy, elemental analyses, inherent viscosity (ηinh), solubility test and specific rotation. Thermal properties of the poly(amide‐imide)s were investigated using thermal gravimetric analysis (TGA). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 516–524, 2004  相似文献   

4.
A new class of optically active poly(amide‐imide‐urethane) was synthesized via two‐step reactions. In the first step, 4,4′‐methylene‐bis(4‐phenylisocyanate) (MDI) reacts with several poly(ethylene glycols) (PEGs) such as PEG‐400, PEG‐600, PEG‐2000, PEG‐4000, and PEG‐6000 to produce the soft segment parts. On the other hand, 4,4′‐(hexafluoroisopropylidene)‐N,N′‐bis(phthaloyl‐L ‐leucine‐p‐amidobenzoic acid) (2) was prepared from the reaction of 4,4′‐(hexafluoroisopropylidene)‐N,N′‐bis(phthaloyl‐L ‐leucine) diacid chloride with p‐aminobenzoic acid to produce hard segment part. The chain extension of the above soft segment with the amide‐imide 2 is the second step to give a homologue series of poly(amide‐imide‐urethanes). The resulting polymers with moderate inherent viscosity of 0.29–1.38 dL/g are optically active and thermally stable. All of the above polymers were fully characterized by IR spectroscopy, elemental analyses, and specific rotation. Some structural characterization and physical properties of this new optically active poly(amide‐imide‐urethanes) are reported. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2288–2294, 2004  相似文献   

5.
A pyromellitic dianhydride (benzene‐1,2,4,5‐tetracarboxylic dianhydride) was reacted with L ‐isoleucine in acetic acid, and the resulting imide acid [N,N′‐(pyromellitoyl)‐bis‐L ‐isoleucine] (4) was obtained in a high yield. 4 was converted into N,N′‐(pyromellitoyl)‐bis‐L ‐isoleucine diacid chloride by a reaction with thionyl chloride. The polycondensation reaction of this diacid chloride with several aromatic diamines, including 1,4‐phenylenediamine, 4,4′‐diaminodiphenyl methane, 4,4′‐diaminodiphenylsulfone (4,4′‐sulfonyldianiline), 4,4′‐diaminodiphenylether, 2,4‐diaminotoluene, and 1,3‐phenylenediamine, was developed with two methods. The first method was polymerization under microwave irradiation, and the second method was low‐temperature solution polymerization, with trimethylsilyl chloride used as an activating agent for the diamines. The polymerization reactions proceeded quickly and produced a series of optically active poly(amide imide)s with good yields and moderate inherent viscosities of 0.17–0.25 dL/g. All of the aforementioned polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these optically active poly(amide imide)s are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 951–959, 2004  相似文献   

6.
N‐Trimellitylimido‐L ‐phenylalanine was prepared from the reaction of 1,2,4‐benzenetricarboxylic anhydride with L ‐phenylalanine in N,N‐dimethylformamide solution at refluxing temperature. The direct polycondensation reaction of the monomer imide‐diacid with 4,4′‐diaminodiphenylsulfone, 4,4′‐diaminodiphenylmethane, 1,4‐phenylenediamine, 1,3‐phenylenediamine, 2,4‐diaminotoluene, 4,4′‐diaminodiphenylether and benzidine was carried out in a medium consisting of triphenyl phosphite, N‐methyl‐2‐pyrrolidone, pyridine and calcium chloride. The resulting poly(amide–imide)s, PAIs, having inherent viscosities of 0.21–0.45 dlg?1 were obtained in high yield. All of the above compounds were fully characterized by IR spectroscopy and elemental analyses. The optical rotation of all PAIs has also been measured. Some structural characterization and physical properties of these new optically active PAIs are reported. © 2001 Society of Chemical Industry  相似文献   

7.
A new class of optically active poly(amide imide)s were synthesized via direct polycondensation reaction of diisocyanates with a chiral diacid monomer. The step‐growth polymerization reactions of monomer bis(p‐amido benzoic acid)‐N‐trimellitylimido‐L‐leucine (BPABTL) (5) as a diacid monomer with 4,4′‐methylene bis(4‐phenylisocyanate) (MDI) (6) was performed under microwave irradiation, solution polymerization under gradual heating and reflux condition in the presence of pyridine (Py), dibuthyltin dilurate (DBTDL), and triethylamine (TEA) as a catalyst and without a catalyst, respectively. The optimized polymerization conditions according to solvent and catalyst for each method were performed with tolylene‐2,4‐diisocyanate (TDI) (7), hexamethylene diisocyanate (HDI) (8), and isophorone diisocyanate (IPDI) (9) to produce optically active poly(amide imide)s by the diisocyanate route. The resulting polymers have inherent viscosities in the range of 0.09–1.10 dL/g. These polymers are optically active, thermally stable, and soluble in amide type solvents. All of the above polymers were fully characterized by IR spectroscopy, 1H NMR spectroscopy, elemental analyses, specific rotation, and thermal analyses methods. Some structural characterization and physical properties of this new optically active poly(amide imide)s are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1647–1659, 2004  相似文献   

8.
A new diimide–diacid monomer, N,N′‐bis(4‐carboxyphenyl)‐4,4′‐oxydiphthalimide (I), was prepared by azeotropic condensation of 4,4′‐oxydiphthalic anhydride (ODPA) and p‐aminobenzoic acid (p‐ABA) at a 1:2 molar ratio in a polar solvent mixed with toluene. A series of poly(amide–imide)s (PAI, IIIa–m) was synthesized from the diimide–diacid I (or I′, diacid chloride of I) and various aromatic diamines by direct polycondensation (or low temperature polycondensation) using triphenyl phosphite and pyridine as condensing agents. It was found that only IIIk–m having a meta‐structure at two terminals of the diamine could afford good quality, creasable films by solution‐casting; other PAIs III using diamine with para‐linkage at terminals were insoluble and crystalline; though IIIg–i contained the soluble group of the diamine moieties, their solvent‐cast films were brittle. In order to improve their to solubility and film quality, copoly(amide–imide)s (Co‐PAIs) based on I and mixtures of p‐ABA and aromatic diamines were synthesized. When on equimolar of p‐ABA (m = 1) was mixed, most of Co‐PAIs IV had improved solubility and high inherent viscosities in the range 0.9–1.5 dl g?1; however, their films were still brittle. With m = 3, series V was obtained, and all members exhibited high toughness. The solubility, film‐forming ability, crystallinity, and thermal properties of the resultant poly(amide–imide)s were investigated. © 2002 Society of Chemical Industry  相似文献   

9.
N,N′‐(Pyromellitoyl)‐bis‐(L ‐leucine) diacid was reacted with ethyl chloroformate in the presence of triethylamine followed by reaction with activated sodium azide and gave N,N′‐(pyromellitoyl)‐bis‐(L ‐leucine) diacylazide in high yield. This diacylazide was heated in dry benzene and gave the unstable N,N′‐(pyromellitoyl)‐bis‐(L ‐leucine) diisocyanate ( 5 ) in quantitative yield. Thus, diisocyanate 5 was generated in situ and polycondensation reaction of this monomer with several aromatic diols, such as 4,4′‐dihydroxybiphenyl, 1,4‐hydroquinone, bisphenol A, phenolphthalein and 1,4‐dihydroxyanthraquinone, was performed in dry toluene under refluxing in the presence of 1,4‐diazabicyclo[2.2.2]octane (triethylenediamine) as a catalyst. The polymerization reactions proceeded within 48 h, producing a series of optically active poly(imide–urethane)s with good yield and moderate inherent viscosity in the range 0.18–0.28 dl g?1. All of the above polymers were fully characterized by infrared spectra, elemental analyses and specific rotation. Some structural characterization and physical properties of these optically active poly(imide–urethane)s are reported Copyright © 2003 Society of Chemical Industry  相似文献   

10.
N‐Trimellitylimido‐L ‐isoleucine (3) was prepared from the reaction of trimellitic anhydride with L ‐isoleucine [L ‐2‐amino‐3‐methylvalerianic acid or (2S,3S)‐2‐amino‐3‐methyl‐n‐valerinic acid] in an N,N‐dimethylformamide solution at the refluxing temperature. The direct polycondensation reaction of the monomer imide diacid (3) with 1,4‐phenylenediamine, 4,4′‐diaminodiphenylmethane, 4,4′‐diaminodiphenylsulfone, diaminodiphenylether, 1,5‐naphthalendiamine, 2,4‐diaminotoluene, and 1,3‐phenylenediamine was performed in a medium consisting of triphenyl phosphite, N‐methyl‐2‐pyrolidone (NMP), pyridine, and calcium chloride. The polycondensation was performed under two different conditions: in one method, the reaction mixture was heated in an NMP solution at 60, 90, and then 130°C for different periods of time, and in the other method, the reaction mixture was refluxed only for 1 min in the same solvent. The resulting poly(amide imide)s (PAIs), with inherent viscosities of 0.21–0.37 dL/g, were obtained in high yields. All of these compounds were fully characterized by IR spectra, elemental analyses, and specific rotation measurements. Some structural characterizations and physical properties of these new optically active PAIs were examined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 116–122, 2003  相似文献   

11.
EPICLON [3a,4,5,7a‐Tetrahydro‐7‐methyl‐5‐(tetrahydro‐2,5‐dioxo‐3‐furanyl)‐1,3‐isobenzofurandione] or [5‐(2,5‐dioxotetrahydrofurfuryl)‐3‐methyl‐3‐cyclohexyl‐1,2‐dicarboxylic acid anhydride] ( 1 ) was reacted with L ‐phenylalanine ( 2 ) in acetic acid, and the resulting amic acid was refluxed under a Dean‐Stark system with benzene, which produced diacid ( 3 ) in high yield. Compound ( 3 ) was converted to the diacid chloride ( 4 ) by reaction with oxalyl chloride in dry carbon tetrachloride. The polycondensation reaction of this diacid chloride ( 4 ) with several aromatic diamines such as 4,4′‐sulfonyldianiline ( 5a ), 4,4′‐diaminodiphenylmethane ( 5b ), 4,4′‐diaminodiphenylether ( 5c ), 1,4‐phenylenediamine ( 5d ), 1,3‐phenylenediamine ( 5e ), 2,4‐diaminotoluene ( 5f ), and 1,5‐diaminonaphthalene ( 5g ) was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as N‐methylpyrrolidone ( NMP ). The polymerization reactions were also performed under two different classical heating methods: low temperature solution polycondensation in the presence of trimethylsilyl chloride, and high temperature polymerization. A series of optically active poly(amide‐imide)s with moderate yield and inherent viscosity of 0.14–0.22 dL/g were obtained. All of the above polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of this optically active poly(amide‐imide)s are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3281–3291, 2004  相似文献   

12.
3,3′‐Dinitrobenzidine was first reacted with excess m‐chlorophenyl acid to form a monomer with dicarboxylic acid end groups. Two types of aromatic dianhydrides (Pyromellitic diconhydride (PMDA) and 3,3′,4,4′‐sulfonyl diphthalic anhydride) were also reacted with excess 4,4′‐diphenylmethane diisocyanate to form polyimide prepolymers terminated with isocyanate groups. The prepolymers were further extended with the diacid monomer to form nitro groups containing aromatic poly(imide amide). The nitro groups in these copolymers were hydrogenated to form amine groups and then were cyclized at 180°C to form poly(imide amide benzimidazole) in poly(phosphoric acid), which acted as a cyclization agent. The resultant copolymers were soluble in sulfuric acid and poly(phosphoric acid), in sulfolane under heating to 100°C, and in the polar solvent N‐methyl‐2‐pyrrolidone under heating to 100°C with 5% lithium chloride. According to wide‐angle X‐ray diffraction, all the copolymers were amorphous. According to thermal analysis, the glass‐transition temperatures of the copolymers were 270–322°C. The 10% weight‐loss temperatures were 460–541°C in nitrogen and 441–529°C in air. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1435–1444, 2003  相似文献   

13.
Layered double hydroxides (LDHs) have attracted much attention as nanofillers in polymer nanocomposites (NCs) due to their particular surface structural, positively charged layer and so on. In this study, a chiral diacid was synthesized by the reaction of tetrabromophthalic anhydride and glutamic acid. LDH was modified by co‐precipitation of aluminum nitrate, magnesium nitrate, and glutamic acid containing diacid. Chiral poly(amide‐imide) (PAI) was synthesized by direct polycondensation reaction of N‐trimellitylimido‐l ‐leucine and 4,4′‐diaminodiphenylether. Different NCs of the obtained modified LDHs and the chiral PAI were prepared in a short time using ultrasonic technique. The morphology and the structure of the obtained samples were characterized by Fourier transform infrared, thermogravimetric analysis (TGA), field emission scanning electron microscopy, transmission electron microscopy, and X‐ray diffraction analysis. TGA of the NCs showed a special order in thermal stability in compression with the neat PAI owing to the uniform distribution of the nanofillers. POLYM. COMPOS., 37:1323–1329, 2016. © 2014 Society of Plastics Engineers  相似文献   

14.
4,4′‐(Hexafluoroisopropylidene)‐bis‐(phthalic anhydride) (1) was reacted with L ‐leucine (2) in toluene solution at refluxing temperature in the presence of triethylamine and the resulting imide‐acid (4) was obtained in quantitative yield. The compound (4) was converted to the diacid chloride (5) by reaction with thionyl chloride. The polymerization reaction of the imide‐acid chloride (5) with 1,6‐hexamethylenediamine (6a) , benzidine (6b) , 4,4′‐diaminodiphenylmethane (6c) , 1,5‐diaminoanthraquinone (6d) , 4,4′‐sulfonyldianiline (6e) , 3,3′‐diaminobenzophenone (6f) , p‐phenylenediamine (6g) and 2,6‐diaminopyridine (6h) was carried out in chloroform/DMAc solution. The resulting poly(amide‐imide)s were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by IR, elemental analyses and specific rotation. Some structural characterization and physical properties of those optically active poly(amide‐imide)s are reported. © 1999 Society of Chemical Industry  相似文献   

15.
Several new optically active poly(amide‐imide)s have been synthesized by solution polycondensation of readily available aromatic diamines with diacid chloride containing ether‐imide and L ‐methionine moieties. Three polycondensation techniques were used: low temperature solution polycondensation, short period reflux conditions, and microwave‐assisted polycondensation. In all cases, the reactions were carried out using equimolecular amounts of the two monomers, in polar aprotic solvents. The obtained compounds were characterized by elemental analysis, solubility tests, FTIR, and 1H NMR spectrometry. Thermal stability of the polymer was studied by thermogravimetric analysis. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1038–1044, 2006  相似文献   

16.
4,4′‐Hexafluoroisopropylidene‐2,2‐bis(phthalic acid anhydride) (1) was treated with L ‐methionine (2) in acetic acid and the resulting 4,4′‐(hexafluoroisopropylidene)‐N,N′‐bis(phthaloyl‐L ‐methionine) diacid (4) was obtained in high yields. The direct polycondensation reaction of this diacid with several aromatic diols, such as bisphenol A (5a), phenolphthalein (5b), 1,4‐dihydroxybenzene (5c), 4,4′‐dihydroxydiphenyl sulfide (5 d), 4,6‐dihydroxypyrimidine (5e), 4,4′‐dihydroxydiphenyl sulfone (5f), and 2,4′‐dihydroxyacetophenone (5g), was carried out in a system of tosyl chloride (TsCl), pyridine (Py), and N,N‐dimethylformamide (DMF). The reactions with TsCl were significantly promoted by controlling alcoholysis with diols, in the presence of catalytic amounts of DMF, to give a series of optically active poly(ester imide)s, (PEI)s, with good yield and moderate inherent viscosity ranging from 0.43 to 0.67 dL/g. The polycondensation reactions were significantly affected by the amounts of DMF, molar concentration of monomers, TsCl and Py, aging time, temperature, and reaction time. All of the aforementioned polymers were fully characterized by 1H NMR, FTIR, elemental analysis, and specific rotation. Some structural characterization and physical properties of these optically active PEIs are reported. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 455–460, 2006  相似文献   

17.
A new‐type tetraimide‐dicarboxylic acid ( I ) was synthesized starting from the ring‐opening addition of p‐aminobenzoic acid (p‐ABA), 4,4'‐oxydiphthalic anhydride (ODPA), and 4,4'‐methylenedianiline (MDA) at a 2:2:1 molar ratio in N‐methyl‐2‐pyrrolidone (NMP), followed by cyclodehydration to the diacid I. A series of poly(amide‐imide‐imide)s ( III a‐i ) with inherent viscosities of 0.78–1.45 dL/g was prepared by triphenyl phosphite‐activated polycondensation from the tetraimide‐diacid I with various aromatic diamines ( II a‐i ) in a medium consisting of NMP, pyridine, and calcium chloride. Most of the polymers were readily soluble in a variety of organic solvents such as NMP, N,N‐dimethyl acetamide, dimethyl sulfoxide, and even in less polar m‐cresol. Compared with those of the corresponding poly(amideimide)s IV a‐i , the solubilities of poly(amide‐imide‐imide)s III a‐i were greatly improved. Polymers III a‐h afforded tough, transparent, and flexible films, which had tensile strengths ranging from 87 to 107 MPa, elongations at break from 9% to 14%, and initial moduli from 2.0 to 2.4 GPa. The glass transition temperatures of polymers were recorded at 270°C–309°C. They had 10% weight loss at temperatures in the range of 540°C–570°C and left more than 52% residue even at 800°C in nitrogen.  相似文献   

18.
Epiclon [3a,4,5,7a‐tetrahydro‐7‐methyl‐5‐(tetrahydro‐2,5‐dioxo‐3‐furanyl)‐1,3‐isobenzofurandione] or [5‐(2,5‐dioxotetrahydrofurfuryl)‐3‐methyl‐3‐cyclohexyl‐1,2‐dicarboxylic acid anhydride] (1) was reacted with L ‐isoleucine (2) in acetic acid and the resulting imide acid (3) was obtained in high yield. The diacid chloride (4) was obtained from diacid derivative (3) by reaction with thionyl chloride. The polycondensation reaction of diacid chloride (4) with several aromatic diamines such as 4,4′‐sulfonyldianiline (5a), 4,4′‐diaminodiphenyl methane (5b), 4,4′‐diaminodiphenylether (5c), p‐phenylenediamine (5d), m‐phenylenediamine (5e), 2,4‐diaminotoluene (5f), and 4,4′‐diaminobiphenyl (5g) was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as o‐cresol. The polymerization reactions were also performed in two other different methods: low‐temperature solution polycondensation and reflux conditions. A series of optically active poly(amide imides) with inherent viscosity of 0.12–0.30 dL/g were obtained. All of the above polymers were fully characterized by IR, elemental analyses, and specific rotation techniques. Some structural characterizations and physical properties of these optically active poly(amide imides) are reported. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2218–2229, 2004  相似文献   

19.
A series of new aromatic poly(amide‐imide)s were synthesized by the triphenyl phosphite‐activated polycondensation of the diimide‐diacid, 1,4‐bis(trimellitimido)‐2,5‐dichlorobenzene (I), with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s had inherent viscosities of 0.88–1.27 dL g−1. The diimide‐diacid monomer (I) was prepared from 2,5‐dichloro‐p‐phenylenediamine with trimellitic anhydride. All the resulting polymers were amorphous and were readily soluble in a variety of organic solvents, including NMP and N,N‐dimethylacetamide. Transparent, flexible, and tough films of these polymers could be cast from N,N‐dimethylacetamide or NMP solutions. Cast films had tensile strengths ranging from 92 to 127 MPa, elongations at break from 4 to 24%, and initial moduli from 2.59 to 3.65 GPa. The glass transition temperatures of these polymers were in the range of 256°–317°C, and the 10% weight loss temperatures were above 430°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 271–278, 1999  相似文献   

20.
N‐Trimellitylimido‐DL and L ‐alanine ( 3 ) were prepared from the reaction of trimellitic anhydride ( 1 ) with DL and L ‐alanine ( 2 ) in N,N‐dimethyl formamide (DMF) solution at refluxing temperature. The direct polycondensation reaction of the monomers imide‐diacid ( 3 ) with 4,4′‐diaminodiphenylsulfone ( 4a ), 4,4′‐diaminodiphenylmethane ( 4b ), 1,4‐phenylenediamine ( 4c ), 1,3‐phenylenediamine ( 4d ), 2,4‐diaminotoluene ( 4e ), and 4,4′‐diaminodiphenylether ( 4f ) was carried out in a medium consisting of triphenyl phosphite, N‐methyl‐2‐pyrolidone (NMP), pyridine, and calcium chloride. The resulting poly(amide‐imide)s PAIs, with inherent viscosities 0.32–0.66 dL/g, were obtained in high yield. All of the above‐mentioned compounds were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these new optically active PAI s are reported. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1312–1318, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号