首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of nanoparticles on nonisothermal polymer crystallization was investigated using poly(ethylene terephthalate) (PET) nanocomposites with alumina (Al2O3) nanoparticles of average size 38 nm. The filler content in the nanocomposites was varied from 0 to 10 wt %. The interparticle spacing was observed to decrease (as expected) with an increase in loading of the nanoparticles. Contrary to previous reports in the literature on semicrystalline polymer‐based composites with micron‐size and macroscale particles, our differential scanning calorimetry, transmission electron microscopy, and X‐ray studies showed that the addition of the nanoparticles did not cause heterogeneous nucleation of PET crystals in nanocomposites containing up to 3 wt % Al2O3. This is attributed to the nanoparticle curvature being comparable to the radius of gyration of the polymer. The addition of the nanoparticles was found to disrupt the spherulitic morphology of the PET because of their physical presence and their proximity to one another. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
In this study, poly(ethylene terephthalate) (PET)/SiO2 nanocomposites were synthesized by in situ polymerization and melt‐spun to fibers. The superfine structure and properties of PET/SiO2 fibers were studied in detail by means of TEM, DSC, SEM, and a universal tensile machine. According to the TEM, SiO2 nanoparticles were well dispersed in the PET matrix at a size level of 10–20 nm. The DSC results indicated that the SiO2 nanoparticles might act as a marked nucleating agent promoting the crystallization of the PET matrix from melt but which inhibited the crystallization from the glassy state, owing to the “crosslink” interaction between the PET and SiO2 nanoparticles. The tensile strength of 5.73 MPa was obtained for the fiber from PET/0.1 wt % SiO2, which was 17% higher than that of the pure PET. The fibers were treated with aqueous NaOH. SEM photographs showed that more and deeper pits were introduced onto PET fibers, which provided shortcuts for disperse dye and diffused the reflection to a great extent. According to the K/S values, the color strength of the dyeing increased with increasing SiO2 content. It is found that the deep dyeability of PET fibers was improved greatly. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
The decomposition of pure polyethylene terephthalate (PET) and PET/silica nanocomposites was investigated by thermal gravimetry (TG) and pyrolysis‐gas chromatography/mass spectrometry (Py‐GC/MS). The influence of the nanosized silica on the pyrolysis properties of the composites was found from the results that the activation energies of decomposition and the residual carbon content increase with silica nanoparticles. It is deduced that the increase of the activation energies and the residual carbon content result from the adsorption of the decomposed products on the surface of silica. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
Poly(ethylene terephthalate) (PET)/polyhedral oligomeric silsesquioxane (POSS) nanocomposites were prepared by in situ polymerization. Light scattering measurement suggested that there is significant change in molecular weight arising from gel formation by chemical crosslinking during polymerization. The thermal decomposition temperatures of the composites measured at 5 wt % weight loss were 5–10°C higher than that of PET. There is no significant change in other thermal properties. Scanning electron microscopy observations suggest that there is obvious phase separation in PET/POSS composites, composites containing 1 wt % of disilanolisobutyl and trisilanolisobytyl‐POSS show fine dispersions of POSS (30–40 nm in diameter), which arise from strong interfacial interactions between POSS and PET during polymerization. The viscosity of the composites increased with the addition of POSS. The observation of a plateau region of composites containing 1 wt % of POSS in the plot of log G′ vs. log G″ indicates strong interfacial interactions between POSS and PET. Sixty‐three percent and 41% increase in tensile strength and 300 and 380% increase in modulus were achieved in the composites containing 1 wt % of disilanol‐ and trisilanol‐POSS, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
In this study, the effect of maleic anhydride grafted styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MA) content on mechanical, thermal, and morphological properties of polyethylene terephthalate/polycarbonate/halloysite nanotubes (PET/PC/HNTs) nanocomposites has been investigated. Nanocomposites of PET/PC (70 : 30) with 2 phr of HNTs were compounded using the counter rotating twin screw extruder. A series of formulations were prepared by adding 5–20 phr SEBS‐g‐MA to the composites. Incorporation of 5 phr SEBS‐g‐MA into the nanocomposites resulted in the highest tensile and flexural strength. Maximum improvement in the impact strength which is 245% was achieved at 10 phr SEBS‐g‐MA content. The elongation at break increased proportionately with the SEBS‐g‐MA content. However, the tensile and flexural moduli decreased with increasing SEBS‐g‐MA content. Scanning electron microscopy revealed a transition from a brittle fracture to ductile fracture morphology with increasing amount of SEBS‐g‐MA. Transmission electron microscopy showed that the addition of SEBS‐g‐MA into the nanocomposites promoted a better dispersion of HNTs in the matrix. A single glass transition temperature was observed from the differential scanning calorimetry test for compatibilized nanocomposites. Thermogravimetric analysis of PET/PC/HNTs nanocomposites showed high thermal stability at 15 phr SEBS‐g‐MA content. However, on further addition of SEBS‐g‐MA up to 20 phr, thermal stability of the nanocomposites decreased due to the excess amount of SEBS‐g‐MA. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42608.  相似文献   

6.
Glass nanocomposites, fabricated using borosilicate glass microspheres and antimony tin oxide (ATO) nanoparticles, were previously reported to have formed segregated networks at the boundaries of the glass particles. This resulted in an electrically conducting composite at low volume fractions (~0.5–0.8 vol%) of ATO nanoparticles. The wide range of electrical response in these borosilicate glass composites containing networks of varying concentration of ATO was examined using impedance spectroscopy. The electrical resistance of these composites varied over a range of around 12 orders of magnitude and exhibited several different types of insulator and conductor behavior. The formation of the ATO network was identified and tracked by scanning electron microscopy images and energy dispersive X‐ray spectroscopy (EDS) scans. Detailed impedance spectroscopy analysis using all of the dielectric functions (impedance, permittivity, electric modulus, and admittance) was found to be an excellent method for detecting the development of the network and the effect that processing variables can have on its formation and the overall electrical properties of the nanocomposites.  相似文献   

7.
Poly(ethylene terephthalate) (PET)/silica nanocomposites were successfully prepared by in situ polymerization. Silica nanoparticles were uniformly dispersed in the process of polymerization. By means of hot‐stage polarization microscope and DSC, the influence of nanosilica on the crystallization of PET/silica nanocomposites has been clarified. The results show that nanosilica does not behave as a nucleating agent in PET but postpones the appearance of crystallite. This phenomenon is very favor to improve spinnability. The investigation on melt spinning of PET/silica nanocomposites also shows that it is advantageous to spinning with descending the spinning temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2564–2568, 2007  相似文献   

8.
Poly(ethylene terephthalate) (PET) nanocomposites reinforced with multiwall carbon nanotubes (MWCNTs) were prepared through melt compounding in a twin‐screw extruder. The presence of MWCNTs, which acted as good nucleating agents, enhanced the crystallization of PET through heterogeneous nucleation. The incorporation of a small quantity of MWCNTs improved the thermal stability of the PET/MWCNT nanocomposites. The mechanical properties of the PET/MWCNT nanocomposites increased with even a small quantity of MWCNTs. There was a significant dependence of the rheological properties of the PET/MWCNT nanocomposites on the MWCNT content. The MWCNT loading increased the shear‐thinning nature of the polymer‐nanocomposite melt. The storage modulus and loss modulus of the PET/MWCNT nanocomposites increased with increasing frequency, and this increment effect was more pronounced at lower frequencies. At higher MWCNT contents, the dominant nanotube–nanotube interactions led to the formation of interconnected or networklike structures of MWCNTs in the PET/MWCNT nanocomposites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1450–1457, 2007  相似文献   

9.
Antimony doped tin oxide (ATO) nanoparticles were used as nanofillers to improve mechanical properties of UV‐cured polyester–acrylate films. To improve the dispersion of ATO nanoparticles in the polyester–acrylate resin matrix and to strengthen interfacial interactions between ATO nanoparticles and the resin matrix ATO nanoparticles were first organically modified with 3‐methacryloxypropyltrimethoxysilane (MPS). The modification of ATO nanoparticles with MPS was confirmed by FTIR spectroscopy and thermogravimetric analysis (TGA). UV‐curing behaviors of the nanocomposites films were investigated by FTIR spectroscopy. Compared with the film with neat ATO nanoparticles, the film with the same amount of MPS‐modified ATO nanoparticles showed slightly higher UV‐curing rate and final conversion. The mechanical properties of the nanocomposites films were measured by universal testing machine. The MPS‐modified ATO nanoparticles could improve considerably the mechanical properties of the UV‐cured polyester–acrylate nanocomposites films. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
So far, the reported content of multiwall carbon nanotubes (MWNTs) in polymer/MWNTs nanocomposites is usually above 0.1 wt %. In this article, we will report our work on the study of the morphology, crystallization, and mechanical properties of poly(ethylene terephthalate) (PET)/MWNTs nanocomposites prepared by in situ polymerization with very low content of MWNTs (from 0.01 to 0.2 wt %). Well‐dispersed MWNTs with a big network throughout PET matrix were observed by SEM. The very small amount of MWNTs displayed a great nucleating effect on the PET crystallization. The crystallization temperature was improved for 6.4°C by using only 0.01 wt % MWNTs. The decreased chain mobility of PET by adding MWNTs was evident by the formation of imperfect or smaller/thinner crystallites with low melting temperature. An increased storage modulus was also achieved for the nanohybirds with MWNT content less than 0.05 wt %. Our result indicates that using very low content MWNTs (less than 0.1 wt %) is a simple way to achieve good dispersion, yet with remarkable enhancement for polymer/MWNTs modification. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3695–3701, 2007  相似文献   

11.
Plant oil based alkyd resin was prepared from jatropha oil and blended with epoxy resin. Subsequently, alkyd/epoxy/NiO nanocomposites with different wt % of NiO nanoparticles have been prepared by mechanical mixing of the designed components. The structure, morphology, and performance characteristics of the nanocomposites were studied by UV‐visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and universal testing machine (UTM). The alkyd/epoxy/NiO nanocomposites showed the gradual increase in thermal stability with increasing NiO content. With 3 wt % NiO content the tensile strength of the nanocomposite increased by 19 MPa (more than twofold) when compared with the pristine polymer. Limiting oxygen index (LOI) value of the nanocomposites indicate that the incorporation of NiO nanoparticles even in 1 wt % can greatly improves the flame retardant property of the nanocomposites. This study confirms the strong influence of NiO nanoparticles on the thermal, mechanical, and flame retardant properties of the alkyd/epoxy/NiO nanocomposites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41490.  相似文献   

12.
Hybrid organic/inorganic thin film nanocomposites based on poly(styrene)‐b‐poly(butadiene)‐b‐poly(methyl methacrylate) triblock copolymer and silver nanoparticles are prepared and characterized. In order to improve the compatibility of nanoparticles with the polymeric matrix, their surface is modified with dodecanethiol surfactant, which enables a good dispersion of nanoparticles through the triblock copolymer, without the formation of aggregates. By atomic force microscopy (AFM), the dispersion level of nanoparticles is analyzed, together with their effect on the thin film surface morphology, for nanocomposites up to 15 wt% of nanoparticles. Dielectric properties of nanocomposites are studied by dielectric relaxation spectroscopy (DRS), analyzing the effect of nanoparticles on dielectric properties. Even if conductivity and permittivity of composites increase with nanoparticle content, percolation threshold is found to be at around 15% in volume. Morphologically analyzed nanocomposites are, in this way, below the threshold.  相似文献   

13.
Novel phosphorus‐containing copolyester nanocomposites were synthesized by in situ polymerization with 2‐carboxyethyl(phenylphosphinic) acid (CEPPA) and nano‐ZnCO3. The flame retardancy and static and dynamic mechanical properties of poly(ethylene terephthalate) (PET)/nano‐ZnCO3 composites and phosphorus‐containing copolyester/nano‐ZnCO3 composites were evaluated with limiting oxygen index measurements, vertical burning testing (UL‐94), a universal tensile machine, and a dynamic mechanical analysis thermal analyzer. The phosphorus‐containing copolyester nanocomposites had higher limiting oxygen indices (ca. 32%) and a V0 rating according to the UL‐94 test; this indicated that nano‐ZnCO3 and CEPPA greatly improved the flame retardancy of PET. The static mechanical test results showed that the breaking strength, modulus, and yield stress of the composites tended to increase with increasing nano‐ZnCO3 content; when 3 wt % nano‐ZnCO3 was added to PET and the phosphorus‐containing copolyester, the breaking strength of the composites was higher than that of pure PET. Dynamic mechanical analysis indicated that the dynamic storage modulus and loss modulus of the PET composites increased markedly in comparison with those of pure PET. However, the glass‐transition temperatures associated with the peaks of the storage modulus, mechanical loss factor, and loss modulus significantly decreased with the addition of ZnCO3 and CEPPA. The morphologies of the composites were also investigated with scanning electron microscopy, which revealed that nano‐ZnCO3 was dispersed homogeneously in the PET and copolyester matrix without the formation of large aggregates. In addition, the interfacial adhesion of nano‐ZnCO3 and the matrix was perfect, and this might have significantly affected the mechanical properties of the composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Glass fiber filled thermotropic liquid crystalline polymer (gLCP)/silica composites were prepared by melt compounding. The total torque of the gLCP/silica composites decreased and the melt flow index increased with increasing silica content, which indicates that the fumed silica nanoparticles act as good processing aids and enhance the processing behavior of gLCP/silica composites. The rheological properties of the gLCP/silica composites were significantly dependent on the silica content. The complex viscosity and storage modulus (G′) of the gLCP/silica composites decreased with increasing silica content. This was attributed to the ability of the silica nanoparticles to break the glass fiber–glass fiber interactions in the gLCPs. The storage modulus and loss modulus (G″) of the gLCP/silica composites increased with increasing frequency, and the increment was more significant at low frequency. Incorporation of a small quantity of silica nanoparticles improved the thermal stability and mechanical properties of gLCP/silica composites. However, at high silica nanoparticle content the mechanical properties of gLCP/silica composites decreased because of the aggregation of silica nanoparticles. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

15.
Poly ethylene terephthalate (PET)-based nanocomposites containing three differently modified clays were prepared by melt compounding. The influence of type of modified clay on surface properties of the resultant nanocomposite was investigated by various analytic techniques, namely, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), contact angle measurement (CAM), scanning electron microscopy (SEM) and reflectance spectroscopy (RS). Any possible interaction between each nanoclay and PET at the surface was elucidated by Fourier transform infrared spectroscopy. Atomic force microscopy studies of the resultant nanocomposites showed increased in surface roughness compared to pure PET. Contact angle measurements on the resultant PET composites demonstrated that the wettability of such composites depends on hydrophilicity of the nanoclay particles. Scanning electron microscopy images illustrated poor interfacial interaction between PET and Na+ clay particles causing fracture type non-uniformity of PET/Na+ clay nanocomposite.  相似文献   

16.
The properties of inorganic nanoparticles/polymer composites depend on the dispersivity of nanoparticles in a polymer matrix. The effect of surface modification on the dispersivity of ZnO nanoparticles in a polyurethane (PU) resin matrix was investigated. The nanocomposites were characterized by scanning electron microscopy (SEM), thermogravimetric analysis, and X‐ray diffraction. The scanning electron micrographs show that ZnO nanoparticles (CDI–SA–APS–ZnO), which were modified by aminopropyltriethoxysilane (APS) and activated stearic acid (SA) by N,N′‐carbonyldiimidazole (CDI), can be homogeneously dispersed and had been encapsulated in the PU phase. The interfacial compatibility between ZnO nanoparticles and PU matrix was significantly improved by hydrophobically modifying ZnO nanoparticles with APS and SA. The tensile strength and elongation at break of PU/CDI–SA–APS–ZnO nanocomposites increased by 82 and 64% respectively, compared with the pure PU material. The thermal stability and ultraviolet‐shielding properties were also improved by incorporating ZnO nanoparticles into the PU matrix. POLYM. COMPOS., 35:237–244, 2014. © 2013 Society of Plastics Engineers  相似文献   

17.
Polymer nanocomposites consisting of single‐walled carbon nanotubes (SWCNTs) and poly(vinyl chloride) were prepared by casting technique. The complex viscosity increased with increasing SWCNTs content, and it had a percolation concentration threshold equal to 0.45 wt % of SWCNTs. The storage modulus, G′, increased with increasing either SWCNTs content or frequency. A gradual decrease in the terminal zone slope of G′ for the nanocomposites with increasing SWCNTs content may be explained by the fact that the nanotube–nanotube interactions will be dominant at higher CNTs content, and lead to the formation of the interconnected or network‐like structures of SWCNTs in the polymer nanocomposites. The rheological loss factor indicates two relaxation peaks at frequencies of 0.11 and 12.8 Hz due to the interaction between SWCNTs and polymer chains and glass transition, respectively. Dynamic mechanical properties were measured for the prepared composites. The results indicate that the storage modulus changes steadily, and the tanδ peaks are less intense for high SWCNTs content. Tensile tests were measured and depicted by an increase in the elastic modulus with increasing SWCNTs content, but it decreases for all composites as the testing temperature increased. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
《Polymer Composites》2017,38(12):2718-2726
In this work, the effect of SiO2 nanoparticles on the morphology and properties of PET/PP in situ microfibrillar reinforced composites (MFC) obtained from slit die extrusion and hot stretching‐quenching was investigated. The scanning electron micrographs revealed that the nanoparticles could have different effects on microfibril formation of PET/PP MFC depending on their concentration. Addition of appropriate content of nanoparticles (e.g., 1.6 and 8 wt%) facilitated the PET droplet‐fibril transition during stretching due to the presence of nanosilica in the PP matrix, which increased the viscosity of PP matrix and then improved the droplet deformability. However, at higher loading (e.g., 12 wt%), the aggregation of silica nanoparticles around the PET droplets prevented disperse phase coalescence during drawing and then reduced the fibrillation ability of PET minor phase. The dynamic rheological test performed at 190°C showed that the increased spatial restriction of the nanoparticles improved the viscoelastic moduli and complex viscosity of PET/PP MFC. DSC results indicated that nanosilica had little heterogeneous nucleation effect on the PP matrix of PET/PP MFC. Additionally, nanoparticles could present drastic improvement in the degradation behavior of PET/PP MFC under thermo‐oxidative conditions and increased the modulus of PET/PP MFC. POLYM. COMPOS., 38:2718–2726, 2017. © 2015 Society of Plastics Engineers  相似文献   

19.
The nanocomposites, based on hybrid poly(ethylene terephthalate) (PET)/silica nanoparticles, were prepared via in‐situ condensation polymerization of terephthalic acid and ethylene glycol in the presence of silica nanoparticles pretreated with a silane coupling agent. Such a polymerization process ensured that the silica nanoparticles were well dispersed in PET matrix with the size ranging from 40 to 60 nm, which was confirmed by transmission electron microscope (TEM) observation. Attributed to the unique bonding between SiO2 nanoparticle and PET, the crystallization behavior of PET was improved significantly, at a low temperature in particular. To further explore the effects of silica nanoparticles on crystallization, extensive differential scanning calorimeter (DSC) measurements were performed in an attempt to reveal the impact of the morphology of the dispersed silica nanoparticle (i.e., sphere or gel‐like) on the peak temperature during melting as well as the amount of heat involved in crystallization. The influences of the structure of polyether glycol (PEG) used for PET preparation as well as the addition of glass fibres (GF) were also investigated using DSC. It was concluded that the synergy among silica nanoparticles, modified PEG, and GFs lowers both Tg and Tm of PET, thus facilitating the injection processes in application. POLYM. COMPOS. 28:42–46, 2007. © 2007 Society of Plastics Engineers  相似文献   

20.
以氧化石墨烯(GO)作为前体,通过氨丙基三乙氧基硅烷将氧化锡锑(ATO)锚定到氧化石墨烯片层上,制备得到氧化锡锑-氧化石墨烯纳米复合材料(ATO/GO)。通过XRD,XPS和SEM对其结构进行测试。并研究了ATO/GO含量对水性环氧涂料(AE)防腐及抗静电性能的影响。结果表明:随ATO/GO含量的增加,复合涂料表面电阻降低,ATO/GO含量大于3%时,表面电阻降低至108Ω以下,达到了抗静电的使用要求;当ATO/GO含量为3%时,漆膜水蒸气透过率降低至(62.13g/m2 h),具有最低的腐蚀电流密度(Icorr=3.73E-9 A/cm2)和最高的腐蚀电压(Ecorr=-0.19926v),防腐效率与空白样相比提高了99.95%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号