首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new adsorbents [β‐cyclodextrin–chitosan (β‐CD–CTS) and β‐cyclodextrin‐6–chitosan (β‐CD‐6‐CTS)] were synthesized by the reaction of β‐cyclodextrin (β‐CD) with epoxy‐activated chitosan (CTS) and the sulfonation of the C‐6 hydroxyl group of β‐cyclodextrin with CTS, respectively. Their structures were confirmed by IR spectral analysis and X‐ray diffraction analysis, and their apparent amount of grafting was determined by ultraviolet spectroscopy. The adsorption properties of β‐CD‐CTS and β‐CD‐6‐CTS for p‐dihydroxybenzene were studied. The experimental results showed that the two new adsorbents exerted adsorption on the carefully chosen target. The highest saturated capacity of p‐dihydroxybenzene of β‐CD‐CTS and β‐CD‐6‐CTS were 51.68 and 46.41 mg/g, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 860–864, 2004  相似文献   

2.
Cyclodextrins can form inclusion complexes with different molecules with the aid of their special chemical (molecular) structures. Physical and chemical properties of molecules can change after the formation of complex. This special feature enables the usage of dextrins in different industry areas. In this study, applicability of cylcodextrins in textile dyeing and washing processes was investigated. With this aim, β‐cyclodextrin was used in direct dyeing of cellulosic fabrics and in rinsing processes of direct dyed fabrics. Retarder/leveling effect of β‐cyclodextrin in dyeing process has been studied and the results were compared with that of a commercial product. In general, cyclodextrins were used in washing processes to remove the absorbed surfactants. It has been investigated whether this effect was the same for washing of dyed fabrics. Eight different direct dyes, for which the chemical structures are known, were used in dyeing and washing processes, and effect of β‐cyclodextrin on different chemical structures was investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 208–218, 2006  相似文献   

3.
In this paper, the effect of β‐cyclodextrin as an additive in the dyeing of polyester with disperse dyes, as a substitute for a commercial surfactant commonly used, was explored with the aim of reducing the environmental impact of the exhausted baths. Using a chemometric approach, a small group of dyes was selected as a ‘training set’ to be representative of a larger series of dyes with a similar structure. The selected dyes were synthesised and applied to the dyeing of polyester fibres under various conditions. The technological properties of the dyed samples were measured. The results showed that β‐cyclodextrin can satisfactorarily be used as an additive in dyebaths for polyester without the addition of other auxiliaries, with a positive environmental impact. Solubility isotherms evidenced dye–β‐cyclodextrin interactions. The formation of inclusion complexes did not produce negative effects on the dyeing performance. Light fastness values were modelled as a function of the structure by the chemometric partial least squares method and the established model was used to predict the fastness of dyes of analogous structure, not yet explored.  相似文献   

4.
The potentialities of sulfobutyl ether‐β‐CDs derivatives as supramolecular carrier in a biphasic Tsuji–Trost reaction catalyzed by a water‐soluble palladium complex of trisulfonated triphenylphosphine have been investigated. The efficiency of these cyclodextrins (CDs) strongly depends on the average molar substitution degree of cyclodextrin and the highest rate enhancements were obtained with cyclodextrins containing about 7 sulfobutyl ether groups. This result was attributed to the absence of a strong interaction between this cyclodextrin and the trisulfonated triphenylphosphine used to dissolve the catalyst in the aqueous phase and to the presence of an extended hydrophobic cavity allowing a better molecular recognition between the substrate and the cyclodextrin. This constitutes the first example of a non‐interacting β‐cyclodextrin/phosphine couple with high catalytic activities.  相似文献   

5.
Attachment of β‐cyclodextrin (β‐CD) molecules on cotton textile provides hosting cavities that can include a large variety of guest molecules for specific functionality. Five different new and existing techniques were evaluated for connecting β‐CD and its derivatives to cotton surface. A comparison has been made in terms of maximum attachment of β‐CD on cotton surface. Novel chemical based crosslinking with homo‐bi‐functional reactive dye (C.I. reactive black 5) and grafting with reactive monochlorotriazinyl‐β‐cyclodextrin show maximum attachment to cotton surface. Innovative, enzymatic coupling of especially synthesized 6‐monodeoxy‐6‐mono(N‐tyrosinyl)‐β‐cyclodextrin was performed on cotton textile surface. Enzymatic coupling was also carried out in a homogeneous system and attachment confirmed by UV–vis spectroscopy. This tyrosinase mediated coupling is low temperature and very specific technique. A phenolphthalein based analytical method was partially modified to reliably measure the amount of attached β‐CD on cotton surface. Atomic force microscopy and scanning electron microscopy techniques were used for surface characterization of the treated and untreated cotton surfaces. Alteration in surface topography has been observed for β‐CD treated samples. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
When β‐cyclodextrin was adopted as a dye catcher, the degree of dye migration onto adjacent fabrics as well as onto the coated surface was greatly reduced, while other physical properties, such as waterproofness and breathability, remained unaffected. When acetylation of β‐cyclodextrin was carried out, its solubility in an organic solvent, including methyl ethyl ketone and toluene, was greatly improved. Hence, it provided a smoother coated surface and an excellent antimigration effect in a direct‐coating system. These results confirm that β‐cyclodextrin is an effective dye catcher in a polyurethane‐based coating system, in which it prevents the migration of the dyes from coated polyester fabrics onto adjacent surfaces. The solubility of cyclodextrin can be optimised by a chemical modification of its cyclodextrin‐hydroxyl groups. Hence, this host–guest interaction demonstrates a universal and effective platform for antimigration coating systems.  相似文献   

7.
Hydrophobically modified chitosan containing β‐cyclodextrin (CD) units was synthesized by using tosylated β‐CD. The final product was characterized by Fourier transform infrared (FTIR) spectroscopy, elemental analysis and TGA, and rheometry. The polymer bearing β‐CD moieties was used to obtain crosslinked microparticles by spray‐drying which could then be used in a controlled release system for drugs. FTIR confirmed the formation of an amide linkage between cyclodextrin and chitosan. As fluorescence spectroscopy demonstrated, hydrophobic microenvironments were formed by chitosan bearing cyclodextrin in solution at lower concentrations than for chitosan. Rheometry and FTIR showed the crosslinking of the new polymer using genipin, a molecule of natural origin. Microspheres (MS) obtained by spray‐drying showed narrow size distribution when β‐CD was grafted onto chitosan and ξ‐potential of MS was slightly lower although it remained positive. In conclusion, β‐CD linked chitosan polymer can be considered as a very promising controlled drug delivery system for drugs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
The two‐phase hydroformylation of higher olefins with the rhodium/trisulfonated triphenylphosphine catalytic system in the presence of various chemically modified α‐cyclodextrins has been investigated. These cyclodextrins allowed us to increase greatly the reaction rate and the chemoselectivity of the reaction but, contrary to what has been observed previously with the chemically modified β‐cyclodextrins, the linear to branched aldehydes ratio was not affected by the presence of α‐cyclodextrin derivatives. Indeed, the latter was found to be similar to that obtained without any mass transfer promoter, suggesting that the catalytic species are stable in the presence of α‐cyclodextrin derivatives.  相似文献   

9.
Cyclodextrins can form inclusion complexes with different molecules with the aid of their special chemical (molecular) structures. Physical and chemical properties of molecules can change after the formation of complex. This special feature enables the usage of dextrins in different industry areas. In this study, applicability of cylcodextrins in textile dyeing and washing processes was investigated. With this aim, β‐cyclodextrin was used in direct dyeing of cellulosic fabrics and in rinsing processes of direct dyed fabrics. Retarder/leveling effect of β‐cyclodextrin in dyeing process has been studied and the results were compared with that of a commercial product. In general, cyclodextrins were used in washing processes to remove the absorbed surfactants. It has been investigated whether this effect was the same for washing of dyed fabrics. Eight different direct dyes, for which the chemical structures are known, were used in dyeing and washing processes, and effect of β‐cyclodextrin on different chemical structures was investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 208–218, 2006  相似文献   

10.
The enantioselective extraction of hydrophobic oxybutynin (OBN) enantiomers by hydrophilic β‐cyclodextrin (β‐CD) derivatives was studied. The efficiency of extraction depends strongly on a number of process variables such as types of organic solvents and β‐CD derivatives, concentration of selector, pH, and temperature. The experimental data were described by a reactive extraction model with a homogeneous aqueous phase reaction of R,S‐OBN with β‐CD. Important parameters of this model were determined experimentally. The physical distribution coefficients for molecular and ionic OBN were 4.96 × 10?3 and 9.52, respectively. The equilibrium constants of the complexation reactions were 1770 and 1340 L/mol for S‐ and R‐OBN, respectively. By modeling and experiment, an optimal extraction condition with pH of 5 and HP‐β‐CD concentration of 0.1 mol/L was obtained with enantioselectivity (α) of 1.26, which was close to the theoretical maximum of 1.32 and performance factor (pfi) of 0.036. The model was verified experimentally with excellent results. © 2011 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

11.
A novel linear water‐soluble β‐cyclodextrin polymer has been prepared by grafting β‐cyclodextrin on poly[(methyl vinyl ether)‐alt‐(maleic anhydride)]. First, lithium hydride was used to obtain the mono‐alkoxide β‐CD. Grafting of β‐CD derivatives to the polymer backbone was then carried out by an esterification method. Using this method, polymers containing various amounts of β‐CD were synthesized. The resulting grafted polymers were characterized by two complementary methods, 1H NMR and IR spectroscopy. The first was used to calculate the degree of substitution for the low amounts of β‐CD. The second method was very useful to evaluate the degree of substitution and the molar ratio of CD especially for high amounts of grafting. Our results indicate good agreement between both methods for intermediate rates. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
The effect of methylated cyclodextrins on the RhH(CO)(TPPTS)3 complex in hydroformylation conditions [50 atm of CO/H2 (1/1) and 80 °C] has been investigated by high‐pressure 31P{1H} NMR spectroscopy. In the presence of methylated β‐cyclodextrin, the equilibria between the rhodium species lie in favor of phosphine low‐coordinated rhodium species. The formation of a stable inclusion complex between this cyclodextrin and the trisulfonated triphenylphosphine ligand (TPPTS) was found to be the key to understanding the displacement of the equilibria. Indeed, the methylated α‐cyclodextrin which does not interact with the TPPTS and the methylated γ‐cyclodextrin which can weakly bind to the TPPTS have no and a very low effect on the equilibria, respectively. These results explain for the first time why a decrease in the normal to branched aldehydes ratio is always observed when cyclodextrins are used as mass‐transfer agents in aqueous biphasic hydroformylation processes.  相似文献   

13.
Based on a combination of poly(N‐isopropylacrylamide), which could respond to an external temperature, and β‐cyclodextrin (β‐CD), which could form a molecular inclusion complex, a novel hydrogel, having both thermal and pH sensitivities and containing β‐CD and N‐isopropylacrylamide (NIPA) segments, was synthesized. For the incorporation of β‐CD into the polymer network, a macromonomer was prepared first by the reaction of a β‐CD‐based polymer with maleic anhydride in dimethylformamide and then by copolymerization with NIPA in an aqueous solution. Elemental analysis, IR spectroscopy, differential scanning calorimetry, and swelling measurements were employed for the characterization of the hydrogel chain structure and its physical properties. With methyl orange as a model compound in inclusion tests, it was found that the hydrogel not only possessed a remarkable supramolecular inclusion ability (with respect to that of the small molecule cyclodextrin) but also could sensitively respond to various external stimuli, including the temperature, pH, and ionic strength. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 361–367, 2003  相似文献   

14.
Chitosan‐graft‐β‐cyclodextrin (CS‐g‐β‐CD) copolymer was synthesized by conjugating β‐cyclodextrins to chitosan molecules through click chemistry. The copolymer structure was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). CS‐g‐β‐CD/CMC nanoparticles were prepared by a polyelectrolyte complexation process in aqueous solution between CS‐g‐β‐CD copolymer and carboxymethyl chitosan (CMC), which was used to load anticancer drug (Doxorubicin hydrochloride, DOX·HCl) with hydrophobic group. The particle size, surface charge, zeta potential, and morphology of the nanoparticles were characterized with dynamic light scattering. The drug loading efficiency and in vitro release of DOX·HCl of the nanoparticles were measured by ultraviolet spectrophotometer. The results demonstrated that the size, surface charge and drug loading efficiency of the nanoparticles could be modulated by the fabrication conditions. The drug loading efficiency of CS‐g‐β‐CD/CMC nanoparticles was improved from 52.7% to 88.1% because of the presence of β‐CD moieties with hydrophobic cavities, which can form inclusion complexes with the drug molecules. The in vitro release results showed that the CS‐g‐β‐CD/CMC nanoparticles released DOX·HCl in a controlled manner, importantly overcoming the initial burst effect. These nanoparticles possess much potential to be developed as anticancer drug delivery systems, especially those drugs with hydrophobic group. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41034.  相似文献   

15.
This study demonstrates the possibility of improving the transfer printability and fastness properties, as well as the ultraviolet‐protecting functionality, of polyester, polyester/wool, polyester/cotton and polyester/viscose woven fabrics via pretreatment with monochlorotriazinyl β‐cyclodextrin (MCT‐β‐CD), chitosan or ethylenediamine, followed by subsequent transfer printing with sublimable disperse dyes. The modification variables as well as the transfer printing conditions were optimised. The experimental results reveal that generating hydrophobic cavities (via grafting of β‐CD) at the fabric surface, fixing of chitosan, with its amino groups, onto the finish/fabric matrix, or introducing amine functional groups, via aminolysis of the polyester component, results in obtaining transfer printed fabric samples with darker depth of shades and better fastness properties, as well as with higher ultraviolet‐protecting functions. It was further noted that, in all cases, the enhancement in the imparted properties is governed by type of substrate, kind and extent of chemical modification, affinity for the sublimable disperse dyes, accessibility of generated hosting and fixing sites, as well as the ultraviolet‐blocking capacities of the modified/post‐printed substrates against damaging ultraviolet rays. The mode of interaction, as well as the surface morphology of some non‐treated and treated fabric samples, was also investigated.  相似文献   

16.
To evaluate molecular recognition function of β‐cyclodextrin to xylene isomers, β‐CD polymer of branching chain extension (β‐CD‐EGDE) was synthesized by crosslinking β‐CD with ethylene glycol diglycidyl ether (EGDE). The pervaporation blend membranes of β‐CD‐EGDE/PVA were prepared by casting an aqueous solution of PVA and β‐CD polymer mixture, and the membranes were used for separation of p‐/m‐ and p‐/o‐xylene mixtures. It was observed that the pristine PVA membrane almost had no selectivity for xylene isomer mixtures. The PVA membrane incorporating β‐CD polymer had molecular recognition function, which selectively facilitated the transport of the xylene isomers. To ascertain pervaporation behavior, the sorption and desorption processes of the membrane in xylenes were investigated. The sorption result showed that the complex formation constant between β‐CDs and xylenes played a key role in swelling behavior. There was a significant difference between diffusion coefficients D and D0, calculated from the sorption and desorption measurements, respectively, indicating that the diffusivity selectivity in desorption stage may have remarkable effect on the total selectivity during pervaporation process. © 2012 American Institute of Chemical Engineers AIChE J, 59: 604–612, 2013  相似文献   

17.
Tencel is a cellulosic fabric obtained from wood pulp that is very similar to natural cotton. For its potential performances to be expanded, Tencel needs to be processed in different ways. The ability of cyclodextrins to include hydrophobic molecules, such as fragrances, antimicrobial agents, and other chemicals, can be exploited to produce new grafted textiles with peculiar performances. We report studies on the grafting of acrylamidomethylated β‐cyclodextrin and monochlorotriazinyl‐β‐cyclodextrin to Tencel and on the inclusion of different molecules in the free cavities of cyclodextrins. The physicochemical properties and performances of the untreated and treated fabric have been determined with differential scanning calorimetry, ultraviolet–visible spectra, X‐ray diffractometry, and breaking load loss, aroma, and antimicrobial finishing tests. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 706–715, 2003  相似文献   

18.
The inclusion complex formed by β‐cyclodextrin (β‐CD) with the cationic surfactant hexadecyltrimethylammonium chloride (HTAC) was studied by viscometry using poly(ethylene oxide) (PEO)–HTAC aggregates as a viscosity indicator. The relative viscosity of β‐CD in aqueous PEO–HTAC solution profiles shows that the formation of the β‐CD/HTAC inclusion complex causes HTAC molecules to be stripped off the PEO chains, resulting in a decrease of aqueous solution viscosity as a result of the decrease in electrostatic repulsion between polymer‐bound HTAC micelles. The viscosity minimum at Cβ‐CD/CHTAC = 0.5 indicates that the molecular ratio of host molecule to guest molecule is 1:2 in the β‐CD/HTAC inclusion complex.  相似文献   

19.
A novel selective separation method for organic compounds, especially thermosensitive substances, has been proposed using unsubstituted β‐cyclodextrin (β‐CD) as a host and some alcohols and aldehydes as model guests in aqueous solution. The separation factors were evaluated from the extraction of an equimolar mixture of alcohol and aldehyde compounds. The inclusion equilibrium constants for several alcohols and aldehydes over β‐CD have been calculated through their UV‐vis spectra. The Gibbs free energy changes of β‐CD/substrates complexes (ΔG) have been calculated combined B3LYP/6‐31G(d)//ONIOM2(B3LYP/6‐31G(d):PM3) with semicontinuum solvation model. The difference of Gibbs free energy changes (ΔΔG) for the inclusion complexes formed via the intermolecular weak interactions e.g., hydrogen bond and electrostatic interaction was the reason why alcohol and aldehyde compounds could be selectively separated. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

20.
Three environment friendly β‐cyclodextrin polymer electrorheological (ER) particles (NS‐β‐CDP, WSS‐β‐CDP, and CLS‐β‐CDP) were synthesized by copolymerization through a mixture of β‐cyclodextrin (β‐CD) and epichlorohydrin in the absence of starch or in the presence of water‐soluble and water‐insoluble starch, respectively. The electrorheological properties of suspensions in silicone oil were then investigated under direct current (dc) electric fields. It was found that the yield stress of the typical WSS‐β‐CDP ER fluid was 6.2 kPa in 4 kV/mm, which is 35% higher than that of NS‐β‐CDP and similar to that of CLS‐β‐CDP. In the meantime, it can display a high ER performance even over a range of 65–95°C. The structures of these polymers were characterized by FT‐IR and Raman spectrometry, respectively. The results demonstrated that all of these polymers keep the original structural character of β‐CD and the copolymerizations between starch and β‐CD indeed occur. Furthermore, it was found that there was some relationship between the characteristic strength of polymers and their dielectric properties. Hence, the improvement of copolymer dielectric properties resulted in the enhancement of ER effects. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1681–1686, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号