首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
An investigation of the influence of the contents of original and modified attapulgite (ATP) on the ultradrawing properties of ultrahigh‐molecular‐weight polyethylene (UHMWPE)/ATP (FAx) and UHMWPE/modified ATP (FAmx) as‐prepared fibers is reported. Similar to what is found for the orientation factor values, the achievable draw ratios (Dra) of the FAx and FAmx as‐prepared fibers approach a maximum value as the original ATP and/or modified ATP contents reach their corresponding optimum values. The maximum Dra value obtained for FAmx as‐prepared fiber specimens is significantly higher than that for FAx as‐prepared fiber specimens prepared at the optimum original ATP content. Similar to what is found for the orientation factors and achievable drawing properties, the tensile strength (σf) and initial modulus (E) of both drawn F2Ax and F2Amx fiber series specimens with a fixed draw ratio reach maximum values as the original and/or modified ATP contents approach the optimum values, respectively. The σf and E values of the F2Amx fiber specimens are always significantly higher than those of the corresponding F2Ax fiber specimens prepared at the same draw ratios and ATP contents but without being modified. To understand the interesting ultradrawing, orientation and tensile properties of FAx and FAmx fiber specimens, Fourier transform infrared spectral, specific surface area, transmission electron microscopic and elemental analyses of the original and modified ATPs were performed. Copyright © 2012 Society of Chemical Industry  相似文献   

2.
High‐molecular‐weight atactic poly(vinyl alcohol) (a‐PVA) gels loaded with (R,S)‐2‐(3‐benzoylphenyl)propionic acid (ketoprofen) were prepared from 5, 6, 7, and 8 g/dL solutions of a‐PVA with a number‐average degree of polymerization of 4000 in an ethylene glycol/water mixture with an aging method to identify the effect of the initial polymer concentration on the swelling behavior, morphology, and thermal properties of a‐PVA gels. Then, the release behavior of ketoprofen from a‐PVA gels was investigated. As the polymer concentration decreased, the ability for network formation decreased, and the degree of swelling of the a‐PVA gels increased. In addition, the enthalpy increased with an increase in the a‐PVA concentration, but the melting temperatures of the gels prepared at different initial polymer concentrations were the same; this indicated that tighter gel networks would be formed by a higher polymer chain density. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
A study of the chain‐scission and crosslinking rates in polystyrene photodegraded in the laboratory with fluorescent tubes (UVA‐340) was made using GPC molecular weight distributions. The analysis was based on the assumption that scission and crosslinking occur randomly and employed a Monte Carlo procedure to compute the changes in molecular weight distribution for chosen values of scission and crosslinking rates and compared the computed profiles with measurements made on the photodegraded samples. Results were obtained for three different exposures and at various depths within 3.2‐mm‐thick bars. The scission/crosslinking ratio, λ, was between 3 and 8 for all samples measured in this study. The lowest values of λ were found near the exposed surface and the highest near the bar center. Both scission and crosslinking rates were much lower in the interior, presumably the result of oxygen starvation. Some bars were exposed while loaded to 10 MNm−2 in uniaxial tension. The stress appeared to increase the reaction rates somewhat near the surface and to depress the rates in the interior correspondingly. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 3015–3023, 2000  相似文献   

4.
Chitosan has emerged as a unique biomaterial, possessing scope in diverse applications in the biomedical, food and chemical industries. However, its high molecular weight is a concern when handling the polymer. Various techniques have been explored for depolymerization of this polymer, wherein enzymes have emerged as the most economic method having minimum degrading effect on the polymer and resulting in formation of side products. Chitosan can be depolymerized using a broad range of enzymes. In this study, various enzymes like α‐amylase, papain, pepsin and bromelain were employed to depolymerize chitosan and convert it into its lower molecular weight counterpart. Further, attempts were made to elucidate the process of depolymerization of chitosan, primarily by determining the change in its viscosity and hence its molecular weight. The process of depolymerization was optimized using a one‐factor‐at‐a‐time approach. The molecular weight of the resultant chitosan was estimated using gel permeation chromatography and infrared spectroscopy. These studies revealed a considerable decrease in molecular weights of chitosan depolymerized by pepsin, papain, bromelain and α‐amylase, resulting in recovery of the low‐molecular‐weight chitosan of 76.09 ± 5, 74.18 ± 5, 55.75 ± 5 and 49.18 ± 5%, respectively. Maximum yield and depolymerization were obtained using pepsin and papain due to their enzymatic recognition pattern, which was also validated using studies involving molecular dynamics. © 2019 Society of Chemical Industry  相似文献   

5.
The free‐radical graft copolymerization of maleic anhydride (MAH) onto highly reactive low molecular weight polyisobutylene was conducted by the use of benzoyl peroxide as an initiator through the solvothermal method. Fourier transform infrared spectra and 1H‐NMR spectra confirmed that maleic anhydride was successfully grafted onto highly reactive low molecular weight polyisobutylene backbone, and the grafting mechanism also was proposed. The effect of benzoyl peroxide content, MAH concentration, total reactant amount in the reaction vessels, reaction temperature and time, and different kinds and volumes of solvents on MAH's degree of grafting was investigated in detail. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Alkyd resins of 40% (I), 50% (II), and 60% (III) oil length (OL) were prepared with rubber seed oil (RSO), phthalic anhydride (PA), and glycerol (GLY), employing the two‐stage alcoholysis method. Changes in the physical characteristics of the reaction medium were monitored by determination of the acid value and the number‐average molecular weight, Mn , of in‐process samples withdrawn at different stages of the reaction. The mode of variation of these properties denotes that the preparation of RSO alkyds is complex. Molecular weight averages and the molecular weight distribution (MWD) of the finished alkyds were determined by GPC, cryoscopy, and end‐group analysis. Molecular weight averages and the MWD vary with differences in the formulation, with sample II exhibiting the narrowest size distribution. Values of Mn with the corresponding polydispersities in brackets are 3234 (1.91), 1379 (1.56), and 3304 (2.56) for samples I, II, and III respectively. Mn values obtained by cryoscopy are comparable to those obtained by gel permeation chromatography (GPC), while end‐group analysis seems to grossly overestimate their molecular weights. Correlation of Mn and the MWD with the quality of the finished alkyds shows that the narrower the size distribution the better the quality of the alkyd. Properties such as the rate of drying and resistance of the alkyds are optimum at 50% OL. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2431–2438, 2001  相似文献   

7.
The influence of formation temperature on the ultradrawing properties of ultrahigh‐molecular‐weight polyethylene/carbon nanotube (UHMWPE/CNT) fiber specimens is investigated. Gel solutions of UHMWPE/CNT with various CNT contents were gel‐spun at the optimum concentration and temperature but were cooled at varying formation temperatures in order to improve the ultradrawing and tensile properties of the UHMWPE/CNT composite fibers. The achievable draw ratio (Dra) values of UHMWPE/CNT as‐prepared fibers reach a maximum when they are prepared with the optimum CNT content and formation temperature. The Dra value of UHMWPE/CNT as‐prepared fibers produced using the optimum CNT content and formation temperature is about 33% higher than that of UHMWPE as‐prepared fibers produced using the optimum concentration and formation temperature. The percentage crystallinity (Wc) and melting temperature (Tm) of UHMWPE/CNT as‐prepared fiber specimens increase significantly as the formation temperature increases. In contrast, Wc increases but Tm decreases significantly as the CNT content increases. Dynamic mechanical analysis of UHMWPE and UHMWPE/CNT fiber specimens exhibits particularly high α‐transition and low β‐transition, wherein the peak temperatures of α‐transition and β‐transition increase dramatically as the formation temperature increases and/or CNT content decreases. In order to understand these interesting drawing, thermal and dynamic mechanical properties of the UHMWPE and UHMWPE/CNT as‐prepared fiber specimens, birefringence, morphological and tensile studies of as‐prepared and drawn fibers were carried out. Possible mechanisms accounting for these interesting properties are proposed. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
The seeded emulsion copolymerization of n‐butyl acrylate and styrene in a weight ratio of 50/50 was investigated. The effect of the type of process (batch vs. semicontinuous) and the amounts of initiator and emulsifier charged into the reactor on the time evolution of the fractional conversion, number of polymer particles, and weight‐average molecular weight (Mw) was analyzed. It was found that the Mw depends to a slight extent on the type of process and the emulsifier concentration and to a larger extent on the initiator concentration. The molecular weight distributions (MWDs) and the gel content of the final latexes were also analyzed. In the absence of chain transfer agents (CTAs), the fraction of gel was higher in the semicontinuous processes. It was also found that the gel content increased with increasing initiator concentration in the recipe. The addition of 1 wt % CTA avoided gel formation and led to an important reduction of the Mw. Nevertheless, the MWDs presented a shoulder or even a second peak at high molecular weights that was due to reactions of chain transfer to the polymer. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1918–1926, 2003  相似文献   

9.
Ultrahigh molecular weight polyethylene (UHMWPE)/nanosilica (F2Sy) and UHMWPE/modified nanosilica (F2Smxy) as‐prepared fibers were prepared by spinning of F2Sy and F2Smxy gel solutions, respectively. Modified nanosilica particles were prepared by grafting maleic anhydride grafted polyethylenes onto nanosilica particles. The achievable draw ratios (Dra) of F2Sy and F2Smxy as‐prepared fibers approached a maximal value as the original and modified nanosilica contents reached corresponding optimum values; the maximal Dra value obtained for F2Smxy as‐prepared fiber specimens was significantly higher than that of the F2Sy as‐prepared fiber specimens prepared at the optimum nanosilica content. The melting temperature and evaluated lamellar thickness values of F2Sy and F2Smxy as‐prepared fiber series specimens decrease, but crystallinity values increase significantly, as their original and modified nanosilica contents respectively increase. Similar to the achievable drawing properties of the as‐prepared fibers, the orientation factor, tensile strength (σf) and initial modulus (E) values of both drawn F2Sy and F2Smxy fiber series specimens with a fixed draw ratio reach a maximal value as the original and/or modified nanosilica contents approach the optimum values; the σf and E values of the drawn F2Smxy fiber specimens are significantly higher than those of the corresponding drawn F2Sy fiber specimens prepared at the same draw ratios and nanosilica contents but without being modified. To understand the interesting ultradrawing, thermal, orientation and tensile properties of F2Sy and F2Smxy fiber specimens, Fourier transform infrared, specific surface area and transmission electron microscopy analyses of the original and modified nanosilica were performed in this study. © 2012 Society of Chemical Industry  相似文献   

10.
A series of aluminoxanes, tetraethylaluminoxane (TEAO), tetraalkylaluminoxane (TAAO), Et2AlOB(4 ? F ? C6H4)OAlEt2 (BTEAO) and ethyl‐iso‐butylaluminoxane modified with p‐fluorophenylboric acid (BEBAO), were prepared and their effects on molecular weight (MW) and molecular weight distribution (MWD) of polyethylene prepared by the iron‐based catalyst [(ArN?C(Me))2C5H3N]FeCl2 (Ar?2,6‐dimethylphenyl) ( 1 ) were investigated. It was found that TEAO and BTEAO were highly efficient activators for iron‐based catalysts and introducing the branched bulky group (eg iso‐Bu) into the aluminoxane activator could improve the MW of the resulting polyethylene. The MW of polyethylene produced by activators modified by p‐fluorophenylboric acid was higher than for other aluminoxane activators. The TEAO‐ and TAAO‐based polyethylene exhibited attractive bimodal MWD, and the lower MW fraction of bimodal MWD was shown to be produced in the early stage of polymerization due to chain transfer to the aluminium activator. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
An ultra‐high molecular weight polyethylene (UHMW‐PE) fiber was prepared by gel spinning using general kerosene as the solvent and gasoline as the extraction solvent. The process of the phase separation of gel as‐spun, spun under various spinning conditions, was investigated. Its extracting and drying process were also studied. The results reveal that the gel as‐spun, spun under a lower spin draft and a lower spin quenching temperature, extracted in times and dried under free‐shrinkage, exhibits a good afterdrawability that eventually endows the fiber with excellent mechanical behaviors. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 670–675, 1999  相似文献   

12.
Studies on the possibility of the application of the solid‐state postpolycondensation (SSP) process to increase the average molecular weight of bisphenol A‐based polycarbonate (PBC) were carried out. The thermally stable PBC with a very high molecular weight reaching about 50,000 g/mol was obtained by the applied SSP technique. Some factors influencing the effectiveness of the SSP process were initially examined: the mode of preparation (crystallization) of the PBC prepolymer, condensation temperature and time, and the vacuum applied in the reaction vessel. It was found that the superior yield of the high molecular weight PBC was obtained by the employing as high as possible values of the parameters taken into consideration. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2165–2171, 2000  相似文献   

13.
Poly(lactic acid) (PLA) was plasticized with ester oligomers having different structure, molecular weight and carboxylic acid content as end‐functionalities. In particular PLA oligomers and a low‐molecular‐weight polyester of adipic acid and 1,2‐propanediol (an adipate‐based derivative) were used and compared. The plasticizing capability was tested and the final structural and thermal properties of PLA matrix were evaluated by correlating the various features to the chemical and physical characteristics of these additives. SEC, DSC, TGA, tensile tests, XRD and SEM results, even after annealing, were collected, and the related data analysed and evaluated with reference to additive starting properties. All the oligoesters were able to generate flexible compounds, but PLA oligomers provided mixtures with reduced structural and thermal stability. Finally, the best performing blend was tested for biodegradability to definitely assess the material suitability for the final application (sustainable packaging). © 2017 Society of Chemical Industry  相似文献   

14.
Molecular ordering in polymers can have a drastic effect on their properties and can be used to induce or enhance functionality. In the case of poly‐l ‐lactic acid (PLLA), which is a widely used polymer in biomedicine, sensors, and actuators, preferential orientation of chains can lead to significantly enhanced electromechanical properties. In this context, template‐wetting is a straightforward method of producing polymer nanostructures, which can lead to some degree of molecular order in the polymer. Template‐wetting of PLLA has not been fully explored, especially in terms of morphological and/or structural characterization. In this work, PLLA nanotubes are grown via a modification of the template‐wetting process, referred to here as melt‐press template‐wetting. The nanotubes are thoroughly characterized with wide‐angle X‐ray diffraction, isothermal differential scanning calorimetry, and polarized light optical microscopy. This characterization indicates that the polymer chains in these PLLA nanotubes are aligned parallel to the cylindrical axis of the nanotube, which may be beneficial in certain applications.  相似文献   

15.
16.
A new monomer, 3,6‐endo‐methylene‐1,2,3,6‐tetrahydrophthalimidobutanoyl‐5‐fluorouracil (ETBFU), was synthesized by reaction of 3,6‐endo‐methylene‐1,2,3,6‐tetrahydrophthalimidobutanoyl chloride and 5‐fluorouracil. The homopolymer of ETBFU and its copolymers with acrylic acid (AA) or vinyl acetate (VAc) were prepared by photopolymerization using 2,2‐dimethoxy‐2‐phenylacetophenone as an initiator at 25 °C. The synthesized ETBFU and its polymers were identified by FTIR, 1H NMR and 13C NMR spectroscopies. The ETBFU content in poly(ETBFU‐co‐AA) and poly(ETBFU‐co‐VAc) was 43 and 14 mol%, respectively. The apparent number‐average molecular weight (Mn) of the polymers determined by GPC ranged from 8400 to 11 300. The in vitro cytotoxicity of the samples against mouse mammary carcinoma (FM3A), mouse leukaemia (P388), and human histiocytic lymphoma (U937) cancer cell lines decreased in the order 5‐FU ≥ ETBFU > poly(ETBFU) > poly(ETBFU‐co‐AA) > poly(ETBFU‐co‐VAc). The in vivo antitumour activity of the polymers against Balb/C mice bearing sarcoma 180 tumour cells was greater than that of 5‐fluorouracil at all doses tested. © 2000 Society of Chemical Industry  相似文献   

17.
A self-scaling rheology-based technique was developed to determine the molecular weight (MW) and molecular weight distribution (MWD) of ethylene-tetrafluoroethylene alternating copolymer (ETFE). The self-scaling technique makes determining MW and MWD with isolated completely rheological method possible. Moreover, the two key parameters (the plateau modulus and zero-shear viscosity) were obtained by more robust numerical technique, which let determining MW and MWD via rheological method initiated by Tuminello [Macromolecules 1993, 26, 499] being building on more robust and rigid basis. Our case overcomes the shortage of Tuminello's method and gives more practical and simply mean to analyze the MW scale and MWD in the production and application of ETFE. It is found that the peak MW of a ETFE (commercial grade: EP541) is 1.73 × 105 g/mol, the MWD curve is a pattern with a slightly raised “shoulder” at high-molecular mass end, and a high peak on the median and the polydispersity is broad (the polydispersity index is near to 10.3). The wide polydispersity indicates the commercial ETFE combining good processability of relative lower MW molecules with physical properties of high MW ones. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Ultra‐high‐molecular‐weight polyethylene/poly (phenyl p‐hydroxyzoate) composites (coded as UHMWPE/PPHZ) were prepared by compression molding. The effects of the poly (phenyl p‐hydroxyzoate) on the tribological properties of the UHMWPE/PPHZ composites were investigated, based on the evaluations of the tribological properties of the composites with various compositions and the examinations of the worn steel surfaces and composites structures by means of scanning electron microscopy and transmission electron microscopy. It was found that the incorporation of the PPHZ led to a significant decrease in the wear rate of the composites. The composites with the volume fraction of the PPHZ particulates within 45% ~ 75% showed the best wear resistance. The friction coefficient of the UHMWPE/PPHZ composites decreased with increasing load and sliding velocity, while the wear rates increased with increasing load. This was attributed to the enhanced softening and plastic deformation of the composites at elevated load or sliding velocity. The UHMWPE/PPHZ composites of different compositions had differences in the microstructures and the transfer film characteristics on the counterpart steel surface as well. This accounted for their different friction and wear behaviors. The transfer film of the UHMWPE/PPHZ composites appeared to be thinner and more coherent, which was largely responsible for their better wear resistance of t composite than the UHMWPE matrix. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2336–2343, 2005  相似文献   

19.
The random copolymers of styrene (St) and 4‐vinylpyridine (4‐VP) with hydroxyl end group and low polydispersities were synthesized by nitroxide‐mediated living radical polymerization initiated by azobisisobutyronitrile (AIBN) and 4‐hydroxyl‐2,2,6,6–tetramethylpiperidine‐oxyl (TEMPO‐OH). The experimental results have shown that all synthesized copolymers have narrow molecular weight distribution. The conversion of monomers and the molecular weight of copolymer increased with polymerization time. The copolymerization rate is affected by molar ratios of HTEMPO to AIBN. 1H‐Nuclear magnetic resonance spectra shows that one end of copolymers was capped by TEMPO‐OH moiety. The use of this method permits the copolymer with hydroxyl chain end and controllable molecular weight and molecular weight distribution. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1842–1847, 2004  相似文献   

20.
A new melt‐processable PTFE material is presented and characterized that provides new and economical solutions in polymer technology while bridging the gap between perfluorinated PTFE and fluorothermoplastic materials such as perfluoroalkoxy resins. Thermal transitions, MW and MWD, and microstructures of the melt‐processable PTFE materials are investigated and compared to standard PTFE, modified PTFE, and PFA materials. The influence of the polymerization type used for the preparation of the melt‐processable PTFE (emulsion and suspension polymerization) on the MWD and the comonomer distribution are discussed.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号