首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
This work reports an in situ WAXS and SAXS investigation, under X‐ray synchrotron source radiation, on the structural evolution during solid‐state uniaxial deformation of poly(ethylene terephthalate) (PET) nanocomposites with 0.3 wt % of 3D nanoparticles [nanotitanium dioxide (TiO2) and nanosilica (SiO2)]. Good dispersion and average agglomerate sizes of nanoparticles of about 80 nm for both nanocomposites were revealed by transmission electron microscopic characterization. The influence of the nanofillers on the deformation‐induced phase's formation and their evolution along the stretching process were compared with respect to the neat PET. WAXS results indicated that the structural evolution of all samples passes through three main stages, with evolution of amorphous phase into mesophase, a rapid increase of molecular orientation, and the formation of a periodical mesophase (PM). The incorporation of the nanofillers promoted a higher fraction, and an earlier formation, of PM during stretching when compared with pure PET. Furthermore, the presence of TiO2 nanoparticles in the PET matrix resulted in the earliest formation and the highest amount of PM and the retardation of crack growth and bigger voids when compared with PET/SiO2 nanocomposite. A multiscale structural evolution mechanism is proposed to interpret these results. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39752.  相似文献   

2.
This article presents the study of melt compounding of polystyrene (PS) with various types of titanium dioxide (TiO2) nanoparticles and surfactants, using a corotating twin screw extruder with multiple screw element configurations. It was found that a properly designed high shear screw configuration and the copolymer of silicone, ethylene oxide, and propylene oxide‐based surfactant produced the greatest degree of nanoparticle dispersion in PS/TiO2 nanocomposites, whereas a silane‐based surfactant and silicon dioxide (SiO2) or aluminum oxide (Al2O3) coated TiO2 nanoparticles yielded nanocomposites with the least photocatalytic degradation effects and the best retention of tensile and impact properties. POLYM. COMPOS., 28:241–250, 2007. © 2007 Society of Plastic Engineers  相似文献   

3.
The environmental sustainability, mechanical durability, and thermal stability of the poly(ethylene terephthalate) (PET)-based nanocomposite films compared with pure PET were evaluated. The samples were obtained by incorporating 2 wt% of TiO2, SiO2, ZnO nanoparticles (NPs), and an equal mixture of NPs in polymer by melt-mixing in a twin-screw extruder. The mechanical properties and hardness of samples were determined by the tensile and the atomic force microscopy-based nanoindentation tests. The melting, crystallization, and glass transition temperatures of samples were studied by dynamic mechanical thermal analysis and differential scanning calorimetry. The effects of compatibility, dispersity, and hydrophobicity of NPs on the surface morphology, crystallinity, and thermomechanical properties of nanocomposites were studied. The interaction of SiO2 NPs with PET chains had a promising effect on the surface morphology, high elastic modulus, dispersibility, crystallinity, and thermostability of the sample. The mixing of ZnO and TiO2 NPs improved the UV-blocking effects, and photostability, while the SiO2 and TiO2 NPs maintained the thermal properties of the film against UV radiation. The resulting film could be a good candidate as a greenhouse covering material due to its suitable photosynthetically active radiation transmittance.  相似文献   

4.
The present research work includes non-isothermal crystallization kinetics of poly(ethylene terephthalate) (PET)–titanium dioxide (TiO2) nanocomposites as well as structural and chemical properties of these nanocomposites. The average grain size of chemically synthesized TiO2 nanoparticles has been calculated 19.31 nm by TEM and XRD. The morphology and structural analysis of PET–TiO2 nanocomposites, prepared via solution casting method, has been investigated using SEM and XRD, respectively. The nature of chemical bonds has been discussed on the basis of FTIR spectra. The effect of TiO2 nanoparticles and cooling rates on non-isothermal crystallization kinetics of PET was examined by differential scanning calorimetry at various heating and cooling rates. It has been observed that TiO2 nanoparticles accelerate the heterogeneous nucleation in PET matrix. The crystallization kinetics could be explained through Avrami–Ozawa combined theory. TiO2 nanoparticles cause to make molecular chains of PET easier to crystallize and accelerate the crystallization rates during non-isothermal crystallization process; this conclusion has also been verified by Kissinger model for crystallization activation energy.  相似文献   

5.
Physical features of polyethylene terephthalate (PET)/low density polyethylene (LDPE) immiscible blends, rich in PET, with and without titanium dioxide (TiO2) nanoparticles are studied. These materials are of industrial interest, because they can be obtained by recycling PET bottles containing TiO2 with their corresponding polyethylene made caps. Their potential application in packaging is investigated. Droplet-matrix morphology is observed by scanning electron microscopy; coalescence occurs during compression molding. Transmission electron microscopy results show that TiO2 nanoparticles are located at the interface between PET and LDPE, forming a physical barrier that favors development of smaller droplets. Thermal analysis results are compatible with the morphology of the blends and the location of the TiO2 nanoparticles. Viscosity obtained by extrusion continuous flow and oscillatory flow measurements in the linear regime show that some of the blends have viscoplastic behavior. Permeability results reveal that 80PET/20LDPE/TiO2 blend nanocomposite shows a balanced barrier character to both oxygen and water vapor. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46986.  相似文献   

6.
This work is an investigation of the effect of different nanofillers: organically modified montmorillonite (MMT), sepiolite (SEP) and nano titanium dioxide (nTiO2) and combination of them in poly(butylene adipate-co-terephthalate) (PBAT) films. Thermal morphological and rheological analyses were conducted to explain the behavior of this nanoparticles on O2 and water vapor permeability coefficients, light transmission, and mechanical properties presented in previous study. Thermal stability of the nanocomposites was slightly decreased by the nanofillers presence. Differential scanning calorimetry and X-ray analyses were carried out to investigate the crystallization behavior of nanocomposites. Transmission electron microscopic analysis showed regular and homogeneous dispersion of the nanoparticles, but scanning electron microscopy showed lack of adhesion in the sepiolite-PBAT interface. Rheological measurements showed significant increase in both complex viscosity and storage modulus due to interactions between clays and PBAT and the effect of sepiolite and nTiO2 on improving the exfoliation of montmorillonite as synergism between the nanofillers.  相似文献   

7.
TiO2–SiO2 composite nanoparticles containing hindered amine light stabilizers (HALSs) were prepared by encapsulation of commercially available TiO2–SiO2 nanoparticles using methyl methacrylate (MMA) and 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate (PMPM) copolymers through mini-emulsion polymerization. The Fourier transform infrared spectral analysis (FTIR) showed that the hindered amine light stabilizer PMPM was incorporated into the TiO2–SiO2/P(MMA-co-PMPM) composite nanoparticles. The X-ray photoelectron spectroscopy analysis (XPS) showed that the surface of TiO2–SiO2 nanoparticles was enriched with HALS moieties. The formation of P(MMA-co-PMPM) random copolymers on the surface of TiO2–SiO2 nanoparticles was determined by differential scanning calorimetry (DSC), and the percentage of the chemically grafted P(MMA-co-PMPM) coverage on the TiO2–SiO2 nanoparticles surface was 40.9 wt% determined by thermogravimetric analysis (TGA), which revealed that the TiO2–SiO2 nanoparticles were successfully encapsulated by MMA–PMPM copolymers. Scanning electron microscopy analysis indicated that the TiO2–SiO2/P(MMA-co-PMPM) composite nanoparticles were mainly homogeneous spherical shape particles, with an average size of about 90 nm. Rhodamine B (Rh.B) photocatalytic degradation study revealed UV-shielding characteristics for TiO2–SiO2/P(MMA-co-PMPM) composite nanoparticles and showed a remarkable decrease in photocatalytic activity of TiO2–SiO2 nanoparticles. These results indicated that TiO2–SiO2/P(MMA-co-PMPM) composite nanoparticles may be promising light stabilizers with covalent functionalization of polymeric HALS, which has little photocatalytic activity, and can be introduced into the weathering-resistant polymer materials to improve their application properties.  相似文献   

8.
In this study, poly(ethylene terephthalate) (PET)/SiO2 nanocomposites were synthesized by in situ polymerization and melt‐spun to fibers. The superfine structure and properties of PET/SiO2 fibers were studied in detail by means of TEM, DSC, SEM, and a universal tensile machine. According to the TEM, SiO2 nanoparticles were well dispersed in the PET matrix at a size level of 10–20 nm. The DSC results indicated that the SiO2 nanoparticles might act as a marked nucleating agent promoting the crystallization of the PET matrix from melt but which inhibited the crystallization from the glassy state, owing to the “crosslink” interaction between the PET and SiO2 nanoparticles. The tensile strength of 5.73 MPa was obtained for the fiber from PET/0.1 wt % SiO2, which was 17% higher than that of the pure PET. The fibers were treated with aqueous NaOH. SEM photographs showed that more and deeper pits were introduced onto PET fibers, which provided shortcuts for disperse dye and diffused the reflection to a great extent. According to the K/S values, the color strength of the dyeing increased with increasing SiO2 content. It is found that the deep dyeability of PET fibers was improved greatly. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
Polymers are gradually replacing conventional materials in various sectors of the economy because of their low cost and broad functionality. However, the high stability of polymers under most environmental conditions can lead to their accumulation in the form of waste. Polyhydroxybutyrate (PHB) is an alternative because of its biodegradability, but it is usually expensive and brittle. These aspects can be improved through the formation of blends, such as with polypropylene (PP). The objective of this study was to investigate the possibility of using titanium dioxide (TiO2) nanoparticles as a prodegradant agent in the PP–PHB–TiO2 system through the evaluation of the effects of these nanoparticles under UV light on the structure and properties of the materials. Samples were produced through extrusion and injection molding and were characterized by their mechanical and thermal properties and structural analyses. The results show that the TiO2 nanoparticles were able to act as a prodegradant agent for the PP–PHB blend; they also successfully improved some of the mechanical and dynamic mechanical properties of the blend. However, a TiO2 nanoparticle content higher than 7.5 wt % was not able to extend the photodegradation process further, possibly as a consequence of the agglomeration of nanoparticles during the processing of these more concentrated blends. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46636.  相似文献   

10.
The processing, mechanical and tribological properties of wax containing thermoplastic polyurethane–filler composites were studied for different weight ratios of graphite, TiO2, MoS2, and ZrO2 microparticles and SiO2 nanoparticles. The composites were compounded by extrusion and processed by compression molding. The rheological, thermal, and mechanical properties were measured, and the wear characteristics were tested with ball-on-plate reciprocating tribometer tests under fixed friction conditions and then observed by scanning electron microscopy. Correlations between the friction, wear, and mechanical properties were observed, and their mechanisms are discussed. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
Novel nanocomposite films of TiO2 nanoparticles and hydrophobic polymers having polar groups, poly (bisphenol‐A and epichlorohydrin) or copolymer of styrene and maleic anhydride, with high refractive indices, high transparency, no color, solvent‐resistance, good thermal stability, and mechanical properties were prepared by incorporating surface‐modified TiO2 nanoparticles into polymer matrices. In the process of preparing colloidal solution of TiO2 nanoparticles, severe aggregation of particles can be reduced by surface modification using carboxylic acids and long‐chain alkyl amines. These TiO2 nanoparticles dispersed in solvents were found not to aggregate after mixing with polymer solutions. Transparent colorless free‐standing films were obtained by drying a mixture of TiO2 nanoparticles colloidal solution and polymer solutions in vacuum. Transmission electronic microscopic studies of the films suggest that the TiO2 nanoparticles of 3–6 nm in diameter were dispersed in polymer matrices while maintaining their original size. Thermogravimetric analysis results indicate that the nanocomposite film has good thermal stability and the weight fraction of observed TiO2 nanoparticles in the film is in good accordance with that of theoretical calculations. The refractive index of nanocomposite films of TiO2 and poly(bisphenol‐A and epichlorohydrin) was in the range of 1.58–1.81 at 589 nm, which linearly increased with the content of TiO2 nanoparticles from 0 to 80 wt %. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
One of the important ways to improve photocatalytic efficiency is to prepare catalyst with enhanced surface area. In this work, titanium dioxide (TiO2) nanoparticles having enhanced surface area were synthesized under the interference of SiO2. The mixed oxide, SiO2-TiO2 (10% mol% Si), was prepared by a sol-gel procedure using titanium tetra-n-butoxide as Ti-precursor. The commercial SiO2 nanoparticles were added into the TiO2 sols after hydrolysis. After condensation and calcination heat treatment, the SiO2-TiO2 nanoparticles were obtained. To achieve the purpose of obtaining the high-surface-area TiO2, the SiO2 was removed subsequently by aqueous NaOH solution. The TiO2 products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), electron spectroscopy for chemical analysis (ESCA), and by N2 adsorption-desorption isotherm. A fine mesoporous structure was formed for as-prepared TiO2 after calcination at 400°C and the average pore diameter was about 7 nm. The porous TiO2 products possess mixing phases of anatase and rutile. Phase transformation from anatase to rutile occurred when the samples were calcined. The phase transition temperature is sensitive to the silicon content. The particle size of ~43 nm remained constant upon calcinations from 500 to 700°C. The specific surface area was increased up to 66% compared to regular TiO2 samples that were prepared by the similar sol-gel procedure. The porous TiO2 nanostructures exhibited enhanced photocatalytic performance to decompose methylene blue under UV irradiation.  相似文献   

13.
This work evaluated the effect of the combination of nanofillers: organically modified montmorillonite (MMT), sepiolite (SEP) and nano titanium dioxide (TiO2) on the oxygen and water vapor permeability coefficients, light transmission and mechanical properties of poly(butylene adipate-co-terephthalate) (PBAT) aiming at packaging application. The clays concentrations were chosen considering percolation threshold from the clays aspect ratio by TEM analyses. Comparing to neat PBAT, oxygen and vapor permeability coefficients showed reduction with the increase of MMT while SEP and nano-TiO2 did not show significant influence. However, nano-TiO2 was the only filler able to reduce UV and visible light transmission. Nanofillers and their combinations showed to be statistically significant for the increase in Young's modulus, although the tensile strength and elongation showed no influence. The results were discussed in terms of the fillers' morphology and dispersion. Nielsen's model was applied to estimate the aspect ratio of the MMT in nanocomposites.  相似文献   

14.
SiO2/RuO2 modified high surface area titania dioxide nanoparticles prepared by hydrogen reduction were examined for their catalytic properties towards the photodegradation of methyl orange (MO), a common water pollutant in the textile industry. The modified materials present enhanced photocatalytic activity and can decompose the MO faster than the unmodified TiO2. Results showed that doping with RuO2 only offered a marginal benefit over TiO2 alone. On the other hand, modification of TiO2with RuO2 and SiO2 resulted in a marked increase in the rate constant and the photodegradation efficiency. These results are consistent with the unique structural, morphologoical and surface characteristics of the composite titania dioxide/ruthenium dioxide/silicon dioxide materials. The lower the average particle size and roughness of the materials, the higher the percentage of photodecomposition and the rate constant. The surface doping and modification effects thus appears synergetic to the charge separation process and the photocatalytic results are explained on the basis of the mechanism that involves efficient separation of electron–hole pairs induced by the silicon dioxide particles. This enhances the ability of the modified TiO2 particles to effectively capture protons. Results also show that the modified nanoparticles can be used repeatedly over a long time without loss of efficiency.  相似文献   

15.
One of the important ways to improve photocatalytic efficiency is to prepare catalyst with enhanced surface area. In this work, titanium dioxide (TiO2) nanoparticles having enhanced surface area were synthesized under the interference of SiO2. The mixed oxide, SiO2-TiO2 (10% mol% Si), was prepared by a sol-gel procedure using titanium tetra-n-butoxide as Ti-precursor. The commercial SiO2 nanoparticles were added into the TiO2 sols after hydrolysis. After condensation and calcination heat treatment, the SiO2-TiO2 nanoparticles were obtained. To achieve the purpose of obtaining the high-surface-area TiO2, the SiO2 was removed subsequently by aqueous NaOH solution. The TiO2 products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), electron spectroscopy for chemical analysis (ESCA), and by N2 adsorption-desorption isotherm. A fine mesoporous structure was formed for as-prepared TiO2 after calcination at 400C and the average pore diameter was about 7 nm. The porous TiO2 products possess mixing phases of anatase and rutile. Phase transformation from anatase to rutile occurred when the samples were calcined. The phase transition temperature is sensitive to the silicon content. The particle size of ∼43 nm remained constant upon calcinations from 500 to 700C. The specific surface area was increased up to 66% compared to regular TiO2 samples that were prepared by the similar sol-gel procedure. The porous TiO2 nanostructures exhibited enhanced photocatalytic performance to decompose methylene blue under UV irradiation.  相似文献   

16.
Poly(phthalazine ether sulfone ketone) (PPESK) is a newly developed membrane material with superior thermal stability and comprehensive properties. Titanium dioxide (TiO2)‐entrapped PPESK ultrafiltration (UF) membranes were formed by dispersing uniformly nanosized TiO2 particles in the casting solutions. Initially, the inorganic nanoparticles were organically modified with silane couple reagent to overcome the aggregation and to improve the dispersibility in organic solvent. The membranes were prepared through the traditional phase inversion method. The effects of inorganic TiO2 nanoparticles on the membrane surface morphology and cross section structure were investigated using scanning electronic microscopy (SEM) and atomic force microscopy (AFM). Water contact angle (CA) measurement was conducted to investigate the hydrophilicity and surface wettability of the membranes. The influence of TiO2 on the permeability, antifouling, and tensile mechanical properties of the PPESK membranes were evaluated by UF experiments and tensile tests. The experimental results showed that the obtained TiO2‐entrapped PPESK UF membranes exhibit remarkable improvement in the antifouling and mechanical properties because of the introduction of TiO2 nanoparticles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3623–3629, 2007  相似文献   

17.
Nanoparticle (NP) additions can substantially improve the performance of reverse osmosis and nanofiltration polyamide (PA) membranes. However, the relative impacts of leading additives are poorly understood. In this study, we compare the effects of TiO2 and SiO2 NPs as nanofillers in PA membranes with respect to permeate flux and the rejection of organic matter (OM) and salts. Thin-film nanocomposite (TFN) PA membranes were fabricated using similarly sized TiO2 15 nm and SiO2 (10 – 20 nm) NPs, introduced at four different NP concentrations (0.01, 0.05, 0.2, and 0.5% w/v). Compared with PA membranes fabricated without NPs, membranes fabricated with nanofillers improved membranes hydrophilicity, membrane porosity, and consequently the permeability. Permeability was increased by 24 and 58% with the addition of TiO2 and SiO2 , respectively. Rejection performance and fouling behavior of the membranes were examined with salt (MgSO4 and NaCl ) and OM (humic acid [HA] and tannic acid [TA]). The addition of TiO2 and SiO2 nanofillers to the PA membranes improved the permeability of these membranes and also increased the rejection of MgSO4 , especially for TiO2 membranes. The addition of TiO2 and SiO2 to the membranes exhibited a higher flux and lower flux decline ratio than the control membrane in OM solution filtration. TFN membranes' HA and TA rejections were at least 77 and 71%, respectively. The surface change properties of NPs appear to play a dominant role in determining their effects as nanofillers in the composite membrane matrix through a balance of changes produced in membrane pore size and membrane hydrophilicity.  相似文献   

18.
Biocomposites containing ultraviolet (UV) radiation absorbing inorganic nanofillers are of great interest in food packaging applications. The biodegradable polylactide (PLA) composite films were prepared by solvent casting method by incorporating 1 wt % of titanium dioxide (TiO2) and Ag‐TiO2 (silver nanoparticles decorated TiO2) nanoparticles to impart the photodegradable properties. The films were exposed to UV radiation for different time periods and morphology of the composite films before and after UV exposure were investigated. The results showed that homogenous filler distribution was achieved in the case of Ag‐TiO2 nanoparticles. The thermal properties and thermomechanical stability of the composite film containing Ag‐TiO2 nanoparticles were found to be much higher than those of neat PLA and PLA/TiO2 composite films. The scanning electron microscopy and X‐ray diffraction studies revealed that the photodegradability of PLA matrix was significantly improved in the presence of Ag‐TiO2 nanoparticles. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Natural rubber/organoclay/titanium dioxide nanocomposites were obtained via mechanical blending using rubber latex, organically modified montmorillonite clay (cloisite 30B) and titanium dioxide (TiO2). Glycerol was utilized as a dispersant for the inorganic components. Scanning electron microscopy analysis shows that TiO2 nanoparticles were deposited on the clay surface and that the clay–TiO2 combination was homogeneously dispersed on the natural rubber. The high aspect ratio and the polar character of the clay layers allowed interactions with individual nanoparticles of TiO2. The X-ray diffraction patterns reveal an increment of the crystalline character of the NR/C30B/TiO2 nanocomposites as a consequence of the nanoscale dispersion of the TiO2 particles. Infrared Spectroscopy spectra indicate compatibility between natural rubber and glycerol due to the formation of hydrogen bonds. A mechanism in particle–natural rubber compatibility, in which glycerol is involved, is proposed. However, nanoscale dispersion was largely dependent on the clay–TiO2 interactions. This work proposes an easy method to immobilize TiO2 nanoparticles on clay layers, which allows their dispersion in polymers. Nanocomposites obtained by this method can be used for supports of photocatalyst molecules.  相似文献   

20.
The effects of particle size of titanium dioxide (TiO2) on mechanical, thermal, and morphological properties of pure polyoxymethylene (POM) and POM/TiO2 nanocomposites were investigated and compared with the results for nanoparticle ZnO in the same matrix, reported in a previous paper. POM/TiO2 nanocomposites with varying concentration of TiO2 were prepared by the melt mixing technique in a twin screw extruder, the same method that used for blending the homogeneous ZnO nanocomposites. The dispersion of TiO2 particles in POM nanocomposites was studied by scanning electron microscopy (SEM). The agglomeration, as observed by the mechanical properties of TiO2 particles in the polymer matrix, increased with increasing TiO2 content, a result not found for ZnO even at lower particle sizes. Increasing the filler content of POM/TD32.4 and POM/TD130 (130 nm) nanocomposites resulted in a decrease in tensile strength. The Young modulus, stress at break and impact strength of TiO2 nanocomposite did not improve with increasing filler contents, in opposition to the better agglomeration conditions of ZnO nanocomposite even at lower particle sizes. Because of agglomeration, the POM/TD32.4 nanocomposites had lower mechanical properties and lower degradation temperature than the POM/TD130 ones. The sizes of nanoparticles determined the agglomeration, but however, the agglomeration also depended on the type of nanoparticles, even when using the same matrix (POM) and the same mixing method. TiO2 nanoparticles were more difficult to mix and were more agglomerated in the POM matrix as compared to ZnO nanoparticles, regardless of the size of the nanoparticles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号