首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The curing exotherm pattern is affected by the equivalent ratio of curing agent, boron trifluoride monoethylamine complex (BF3 · MEA), to epoxy resin. The diglycidyl ether of 9,9-bis(4-hydroxyphenyl) fluorene (DGEBF) cures more slowly than the diglycidyl ether of bisphenol A (Epon 828). The glass transition temperatures (Tg's) of BF3 · MEA cured Epon 828 are increased with inceasing concentration of curing agent (0.0450–0.1350 eq.) cured DGEBF. The activation energies for the thermal decomposition for BF3 · MEA (0.0450–0.1350 eq.) cured DGEBF. The activation energies for the thermal decomposition for BF3 · MEA (0.0450 eq./epoxy eq.) cured Epon 828 and DGEBF are almost equivalent 43 and 44 kcal/mol, respectively. DGEBF when added to DGEBA improves the Tg and char yield with the BF3 · MEA curing system. The Tg of both resin systems can be increased by longer post cure, whereas the char yield does not appear to change significantly. No ester group formation is found for the BF3 · MEA-cured DGEBF, although this has been previously reported for the DGEBA system. The BF3 · MEA cure at 120°C is better than at 140°C because of vaporization and degradation of the curing agent at the higher temperature. The rapid gelation of the epoxy resin may be another reason for the lower degree of cure at high temperature.  相似文献   

2.
The study synthesized a trifluoromethyl (CF3) groups with a modified epoxy resin, diglycidyl ether of bisphenol F (DGEBF), using environmental friendly methods. The epoxy resin was cured with 4,4′‐diaminodiphenyl‐methane (DDM). For comparison, this study also investigated curing of commercially available diglycidyl ether of bisphenol A (DGEBA) with the same curing agent by varying the ratios of DGEBF. The structure and physical properties of the epoxy resins were characterized to investigate the effect of injecting fluorinated groups into epoxy resin structures. Regarding the thermal behaviors of the specimens, the glass transition temperatures (Tg) of 50–160°C and the thermal decomposition temperatures of 200–350 °C at 5% weight loss (Td5%) in nitrogen decreased as amount of DGEBF increased. The different ratios of cured epoxy resins showed reduced dielectric constants (Dk) (2.03–3.80 at 1 MHz) that were lower than those of pure DGEBA epoxy resins. Reduced dielectric constant is related to high electrronegativity and large free volume of fluorine atoms. In the presence of hydrophobic CF3 groups, the epoxy resins exhibited low moisture absorption and higher contact angles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Microcapsules containing a curing agent, 2‐phenyl imidazole (2PZ), for a diglycidyl ether of bisphenol A (DGEBA) epoxy resin were prepared by a solid‐in‐oil‐in‐water emulsion solvent evaporation technique with poly(methyl methacrylate) (PMMA) as a polymeric wall. The mean particle size of the microcapsules and the concentration of 2PZ were about 10 μm and nearly 10 wt %, respectively. The onset cure temperature and peak temperature of the DGEBA/2PZ–PMMA microcapsule system appeared to increase by nearly 30 and 10°C, respectively, versus those of the DGEBA/2PZ system because of the increased reaction energy of curing. The former could take more than 3 months at room temperature, whereas the latter was cured after only a week. The values of the reaction order (a curing kinetic parameter) for DGEBA/2PZ and DGEBA/2PZ–PMMA microcapsules were quite close, and this showed that the curing reactions of the two samples proceeded conformably. The curing mechanism was investigated, and a two‐step initiation mechanism was considered: the first was assigned to adduct formation, whereas the second was due to alkoxide‐initiated polymerization. The glass‐transition temperature of DGEBA/2PZ was 165.2°C, nearly 20°C higher than the glass‐transition temperatures of DGEBA/2PZ–PMMA microcapsules and DGEBA/2PZ/PMMA microspheres, as determined by differential scanning calorimetry measurements. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Diglycidyl ether of bisphenol fluorene (DGEBF) and 9,9‐bis(4‐aminophenyl) fluorene (BPF) were synthesized to introduce more aromatic structures into an epoxy system, and their chemical structures were characterized with Fourier transform infrared spectroscopy, NMR, and mass spectrometric analysis. The dynamic curing behavior of the DGEBF/BPF system was investigated with differential scanning calorimetry. DGEBF was cured with BPF, diaminodiphenylsulfone (DDS), and diaminodiphenylmethane (DDM), and E‐44 (bisphenol A epoxide) was also cured with BPF for comparison. The thermal properties of the obtained polymers were evaluated with dynamic mechanical thermal analysis and thermogravimetric analysis. The cured DGEBF/BPF system showed a remarkably higher glass‐transition temperature, better thermal stability and lower moisture absorption in comparison with the general bisphenol A epoxy resin/BPF system but approximated the heat resistance of the DGEBF/DDS and DGEBF/DDM systems. Such properties make this epoxy system very promising for heat‐resistant applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
A novel adamantane‐containing epoxy resin diglycidyl ether of bisphenol‐adamantane (DGEBAda) was successfully synthesized from 1,3‐bis(4‐hydroxyphenyl)adamantane by a one‐step method. The proposed structure of the epoxy resin was confirmed with Fourier transform infrared, 1H‐NMR, gel permeation chromatography, and epoxy equivalent weight titration. The synthesized adamantane‐containing epoxy resin was cured with 4,4′‐diaminodiphenyl sulfone (DDS) and dicyandiamide (DICY). The thermal properties of the DDS‐cured epoxy were investigated with differential scanning calorimetry and thermogravimetric analysis (TGA). The dielectric properties of the DICY‐cured epoxy were determined from its dielectric spectrum. The obtained results were compared with those of commercially available diglycidyl ether of bisphenol A (DGEBA), a tetramethyl biphenol (TMBP)/epoxy system, and some other associated epoxy resins. According to the measured values, the glass‐transition temperature of the DGEBAda/DDS system (223°C) was higher than that of the DGEBA/DDS system and close to that of the TMBP/DDS system. TGA results showed that the DGEBAda/DDS system had a higher char yield (25.02%) and integral procedure decomposition temperature (850.7°C); however, the 5 wt % degradation temperature was lower than that of DDS‐cured DGEBA and TMBP. Moreover, DGEBAda/DDS had reduced moisture absorption and lower dielectric properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Diglycidyl ether of bisphenol A (DGEBA) and diglycidyl ether of bisphenol F (DGEBF) reinforced with organo‐montmorillonite clay nanoplatelets were investigated using anhydride‐ and amine‐curing agents. The sonication technique was used to process epoxy/clay nanocomposites. The basal spacing of clay nanoplatelets was observed by wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering (SAXS) techniques, and transmission electron microscopy. It was found that the basal spacing of clay nanoplatelets in epoxy matrix was expanded after mixing with either DGEBA/DGEBF or methyltetrahydrophthalic‐anhydride (MTHPA) curing agent. The sonication technique provided larger d‐spacing of clay nanoplatelets. Because of the different curing temperatures, MTHPA‐cured epoxy/clay nanocomposites produced more expanded d‐spacing of clay nanoplatelets modified with methyl, tallow, bis(2‐hydroxyethyl) quaternary ammonium (MT2EtOH) than triethylenetetramine‐cured nanocomposites. Depending on the selection of curing agent and organic modification for clay nanoplatelets, the d‐spacing was expanded to be up to 8.72 nm. POLYM. ENG. SCI., 46:452–463, 2006. © 2006 Society of Plastics Engineers  相似文献   

7.
The poly(sily ether) with pendant chloromethyl groups (PSE) was synthesized by the polyaddition of dichloromethylsilane (DCM) and diglycidylether of bisphenol A (DGEBA) with tetrabutylammonium chloride (TBAC) as a catalyst. This polymer was miscible with diglycidyl ether of bisphenol A (DGEBA), the precursor of epoxy resin. The miscibility is considered to be due mainly to entropy contribution because the molecular weight of DGEBA is quite low. The blends of epoxy resin with PSE were prepared through in situ curing reaction of diglycidyl ether of bisphenol A (DGEBA) and 4,4′‐diaminodiphenylmethane (DDM) in the presence of PSE. The DDM‐cured epoxy resin/PSE blends with PSE content up to 40 wt % were obtained. The reaction started from the initial homogeneous ternary mixture of DGEBA/DDM/PSE. With curing proceeding, phase separation induced by polymerization occurred. PSE was immiscible with the 4,4′‐diaminodiphenylmethane‐cured epoxy resin (ER) because the blends exhibited two separate glass transition temperatures (Tgs) as revealed by the means of differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). SEM showed that all the ER/PSE blends are heterogeneous. Depending on blend composition, the blends can display PSE‐ or epoxy‐dispersed morphologies, respectively. The mechanical test showed that the DDM‐cured ER/PSE blend containing 25 wt % PSE displayed a substantial improvement in Izod impact strength, i.e., epoxy resin was significantly toughened. The improvement in impact toughness corresponded to the formation of PSE‐dispersed phase structure. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 505–512, 2003  相似文献   

8.
A polymer with high aromaticity and/or cyclic ring structures chain backbone usually has high heat, thermal, and flame resistance. Two diglycidyl ethers of bisphenols were prepared from 4,4′ isopropylidenediphenol (DGEBA) and 9,9-bis(4-hydroxyphenyl) fluorene (DGEBF) for evaluation. Four boroxines—trimethoxyboroxine (TMB), triethoxyboroxine (TEB), triisopropoxyboroxine (TIPB) and triphenoxyboroxine (TPB)—were used as the curing agents. DGEBA and DGEBF cured with various boroxines indicate that the trend for their respective glass transition temperature (Tg's), degradation temperatures (Td's), and gel fractions are TMB-cured epoxy ≈ TEB-cured epoxy < TIPB cured epoxy < TPB cured epoxy. The DGEBF system usually has a higher Tg, Td, gel fraction, oxygen index (OI), and char yield than the related DGEBA system. DGEBF/DGEBA (80/20 mol ratio) shows a synergistic effect in regard to char formation. This effect exists not only in the copolymer system but also in blended homopolymers of the separately cured resins. A modified mechanism for the polymerization of phenyl glycidyl ether (PGE) with TMB has been proposed.  相似文献   

9.
The article describes the synthesis and characterization of heterocyclic derivatives of stannanes obtained by reacting 1 mol of biguanide (B) with 1 mol of phenylethyltindihydride (PED) or phenylmethyltindihydride (PMD) or phenylbutyltindihydride (PBD) or butylmethyltin dihydride (BMD) and their use as curing agents for diglycidyl ether of bisphenol‐A (DGEBA). The derivatives so obtained have been designated as BPED or BPMD or BPBD or BBMD. Structural characterization of the derivatives was done by elemental analysis and spectroscopic techniques, viz. IR, 1H NMR, 13C NMR, 119Sn NMR. These derivatives were used as curing agents to investigate the effect of structure on the curing and thermal behavior of DGEBA. The curing behavior of DGEBA was investigated by differential scanning calorimetry in the presence of stoichiometric amounts of derivatives. A broad exothermic transition in the temperature range of 180–232°C was observed in all the samples. Thermal stability of epoxy resin, cured isothermally, was evaluated by recording thermogravimetric traces in nitrogen atmosphere. The percent char yield was highest in case of resin sample, DBPMD. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
A polymer having high aromaticity and/or cyclic ring structures in the chain backbone usually gives high heat resistance and flame resistance. Five glycidyl ether-type epoxy resins are prepared from bisphenol A (DGEBA), 9,9-bis(4-hydroxyphenyl)fluorene (DGEBF), 3,6-dihydroxyspiro-[fluorene-9,9′-xanthane] (DGEFX), 10,10-bis(4-hydroxyphenyl) anthrone (DGEA), and 9,9,10,10-tetrakis(4-hydroxyphenyl)anthracene (TGETA) in order to study structure–thermal stability–flame resistance property relationships. In this study, trimethoxyboroxine (TMB) and diaminodiphenylsulfone (DDS) are employed as the curing agents. The char yield at 700°C under a nitrogen atmosphere and the glass transition temperature (Tg) for the uncured resins decrease according to the sequence TGETA > DGEFX > DGEA > DGEBF > DGEBA. The Tg values for these cured epoxy resins are DGEBA < DGEBF < DGEFX < DGEA. A Tg for the TGETA is not obtainable but would be expected to be the highest. The char yields at 700°C of these cured epoxy resins have the same trend as the uncured resins. DGEBF, DGEFX, DGEA, and TGETA added to the DGEBA system show increases in the char yield, Tg, and oxygen index with increasing concentration of these novel epoxy resins.  相似文献   

11.
In this study, 5‐hydroxymethyl‐2‐furfural (HMF) was used as a renewable resource for preparing an epoxy curing agent (furan‐based flame retardant, FBF), and a phosphorus‐containing functional group was also incorporated to enhance the flame retardancy of FBF. FBF was easily synthesized, and the total yield was 83%. 2‐Methyl imidazole was chosen as an accelerant to reduce the activation energy for the reaction of FBF with diglycidyl ether of bisphenol A (DGEBA). The DGEBA cured with FBF showed a low glass transition temperature and cross‐linking density compared with those of DGEBA cured with isophorondiamine (IPDA) and 4,4′‐diaminodiphenylmethane (DDM). However, the FBF‐cured DGEBA exhibited a comparable tensile strength with that of the DGEBA‐IPDA and DGEBA‐DDM systems (81.96 MPa) and a significantly higher tensile modulus (1721 MPa) owing to the H‐bonding via oxygens of the phosphorus group of FBF in the network structure. The DGEBA cured with FBF showed a high char yield and a high limitation of oxygen index value (29.7%) compared with those of the IPDA‐ and DDM‐cured ones. The cone calorimeter measurement also showed that the DGEBA‐FBF system had a low heat release rate, total heat release, and smoke production rate, indicating the improved flame retardancy mediated by FBF.  相似文献   

12.
Three kinds of 2‐ethyl‐4‐methylimidazole (EMI) derivatives (N‐acetyl EMI, N‐benzoyl EMI, and N‐benzenesulfonyl EMI) were synthesized through the reaction of EMI with acetyl chloride, benzoyl chloride, and benzenesulfonyl chloride, respectively. And the structure was confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H‐nuclear magnetic resonance spectroscopy (1H NMR) spectra. Furthermore, the synthesized EMI derivatives were applied in diglycidyl ether of bisphenol A epoxy resin (DGEBA) as latent curing agent. Differential scanning calorimeter (DSC) was used to analyze the curing behavior of DGEBA/EMI derivative systems, indicating DGEBA could be efficiently cured by the EMI derivatives at 110~160°C, and the corresponding curing activation energy ranged from 71 to 86 kJ/mol. Viscosity data proves that the storage life of DGEBA with N‐acetyl EMI (NAEMI), N‐benzoyl EMI (NBEMI), and N‐benzenesulfonyl EMI (NBSEMI) at room temperature was 38 d, 50 d, and 80 d, and that at 10°C was 90 d, 115 d, and 170 d, respectively. Besides, thermogravimetry (TG), izod impact strength (IIS), and tensile shear strength (TSS) were tested to characterize the thermal stability and mechanical properties of DGEBA cured by EMI derivatives. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42563.  相似文献   

13.
The curing behaviour of diglycidyl ether of bisphenol‐A (DGEBA) was investigated by differential scanning calorimetry using bis(4‐carboxyphenyl) dimethyl silane (CPA) as a crosslinking agent and imidazole as a catalyst. Two exotherms were observed in the absence of catalyst in the temperature range 166–328 °C. A significant decrease in the curing temperature was observed when 0.1% imidazole was used as catalyst. Further increase in the concentration of imidazole resulted in a decrease in the peak exotherm temperature. The effect of stoichiometry of functional groups on the curing behaviour of DGEBA was investigated by taking varying mole ratios of CPA, ranging from 1 to 2.5, keeping the concentration of imidazole as 0.1% w/w. The heat of polymerization (ΔH) was found to be maximum at a molar ratio of 1:1.75 (DGEBA:CPA). Mixtures of diaminodiphenyl sulfone (DDS and CPA or phthalic anhydride (PA) and CPA in ratios of 1:0, 0.25:0.75, 0.5:0.5, 0.75:0.25) were also used to investigate the curing behaviour of DGEBA. A significant decrease in curing temperature of DGEBA/DDS was observed on partially replacing DDS with CPA, whereas marginal change in the curing temperatures was observed on replacing phthalic anhydride with CPA. The thermal stability of epoxy resin, cured isothermally, was evaluated by recording thermogravimetry/dynamic thermogravimetry traces in nitrogen atmosphere. The percentage char yield was highest for the sample cured using 1.75 mole of CPA. Copyright © 2003 Society of Chemical Industry  相似文献   

14.
Nanocomposites from nanoscale silica particles (NS), diglycidylether of bisphenol‐A based epoxy (DGEBA), and 4,4′‐diaminobiphenyl benzidine (DAPB) as curing agent were obtained from direct blending of these materials. This homogenous mixture was cured in the oven at a particular temperature for a certain time or scanned from room temperature up to 300°C in differential scanning calorimeter (DSC). Mechanism and kinetic of the cure reaction of nanocomposite and thermal stability of the cured sample were studied with FTIR, DSC, and thermogravimetric analysis, respectively. The effect of amount of nanosilica (NS) particles as catalyst on the cure reaction of DGEBA/DAPB system was studied by the Kissinger and Ozawa equations. The existence of NS particles with hydroxyl groups in the structure catalyzes the cure reaction of DGEBA/DAPB system, increased the rate constant, and shifted the exothermic peak toward lower temperatures with increasing amount of NS particles. The activation energies of cure reaction of pure DGEBA/DAPB system obtained from two methods were in good agreement and decreased when NS particles were present in the mixture. The isothermal cure reaction at 145°C in an oven was followed by measuring the disappearance peak of epoxide group at 916 cm−1 using FTIR. The diffusive behavior of cured samples was investigated during water sorption at 25°C and the experimental results fitted well according to Fick's law. Diffusion coefficient of cured sample containing 10% NS decreased in comparison to the sample without NS particles. POLYM. COMPOS., 2008. © 2007 Society of Plastics Engineers  相似文献   

15.
An investigation of the factors influencing the degree of exfoliation of an organically modified clay in a series of epoxy resins is reported. The use of sonication, choice of curing agent, effect of the moisture content of the clay, and the cure temperature were examined. The dispersion was characterized using a combination of rheological measurements, X‐ray diffraction, and dynamic mechanical thermal analysis. Rheological analysis of the clay dispersion in the epoxy monomer indicated that at high clay loads Herschel–Bulkley type behavior is followed. Higher cure temperatures and higher levels of clay moisture were found to influence the extent of exfoliation. Improvements in physical properties were observed through the addition of nanocomposites. The DGEBA/DDM and DEGEBA/DDS exhibited 2 and 4°C increase, respectively, in Tg per wt % of added clay. DGEBF showed virtually no enhancement. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

16.
Time‐of‐flight secondary ion mass spectrometry and principal components analysis were used in real time to monitor the progress of curing reactions on the surface of a diglycidyl ether of bisphenol A (DGEBA) and diglycidyl ether of bisphenol F (DGEBF) epoxy resin blend reacted with the diamine hardener isophorone diamine at different time intervals. Molecular ions in the mass spectra that characterized the curing reactions steps, including blocking, coupling, branching, and crosslinking, were identified. The aliphatic hydrocarbon ions were correlated to the curing reaction rate, and this indicated that coupling and branching occurred much faster than the blocking and crosslinking curing reactions steps. The total conversion of the coupling and branching reaction steps were followed on the basis of changes with time in the relative ion intensity of molecular ions assigned to the DGEBA/DGEBF, aliphatic hydrocarbon, epoxide, and aromatic ring structures. Indicative measures of crosslinking density were monitored through the observation of changes in the ratio of the relative intensities of the aliphatic hydrocarbon and hydroxyl molecular ions over time. The curing reaction conversion was established by the observation of the changes in the relative ion intensity of the molecular ions that were related to the DGEBA/DGEBF molecules. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The curing behavior of diglycidyl ether of bisphenol‐A (DGEBA) was investigated by differential scanning calorimetry, using varying molar ratios of imide‐amines and 4,4′‐diaminodiphenyl sulfone (DDS). The imide‐amines were prepared by reacting 1 mol of pyromellitic dianhydride (P) with excess (2.5 mol) of 4,4′‐diaminodiphenyl ether (E), 4,4′‐diaminodiphenyl methane (M), or 4,4′‐diaminodiphenyl sulfone (S) and designated as PE, PM, PS. Structural characterization was done using FTIR, 1H NMR, 13C NMR spectroscopic techniques and elemental analysis. The mixture of imide‐amines and DDS at ratio of 0 : 1, 0.25 : 0.75, 0.5 : 0.5, 0.75 : 0.25, and 1 : 0 were used to investigate the curing behavior of DGEBA. The multiple heating rate method (5, 10, 15, and 20°C/min) was used to study the curing kinetics of epoxy resins. The peak exotherm temperature was found to be dependent on the heating rate, structure of imide‐amine, and also on the ratio of imide‐amine : DDS used. Activation energy was highest in case of epoxy cured using a mixture of DDS : imide‐amine of a ratio of 0.75 : 0.25. Thermal stability of the isothermally cured resins was also evaluated in a nitrogen atmosphere using dynamic thermogravimetry. The char yield was highest in case of resins cured using mixture of DDS : PS (0.25 : 0.75; EPS‐3), DDS : PM (0.25 : 0.75; EPM‐3), and DDS : PE (0.75 : 0.25; EPE‐1). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3502–3510, 2006  相似文献   

18.
The article describes the synthesis and characterization of silicon‐containing amide amines obtained by the reaction of bis(4‐chlorobenzoyl)dimethylsilane with 4,4′‐diaminodiphenyl ether, 4,4′‐diaminodiphenyl methane, 4,4′‐diaminodiphenyl sulfone/3,3′‐diaminodiphenyl sulfone, bis(3‐aminophenyl)methyl phosphine oxide, and tris(3‐aminophenyl)phosphine oxide with dimethyl acetamide as a solvent. Structural characterization of amide amines was done with Fourier transform infrared and 1H‐NMR spectroscopy. We used these aromatic amide amines as curing agents to investigate the effect of structure and molecular size on the curing and thermal behavior of diglycidyl ether of bisphenol A (DGEBA). The curing behavior of DGEBA in the presence of stoichiometric amounts of silicon‐containing aromatic amide amines was investigated by differential canning calorimetry. A broad exothermic transition in the temperature range of 200–300°C was observed in all the samples. The peak exotherm temperature was lowest in the case of phosphorus‐containing amides and was highest in the case of ether‐containing amides. Thermal stability of the isothermally cured resins was evaluated with dynamic thermogravimetry in a nitrogen atmosphere. A significant improvement in the char yield was observed with silicon‐containing amines, and it was highest in case of samples with both silicon and phosphorus as flame‐retarding elements. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1345–1353, 2003  相似文献   

19.
20.
Two new epoxy resins, diglycidyl ether of ethoxylated bisphenol‐A (BPA) with two and six oxyethylene units (DGEBAEO‐2 and DGEBAEO‐6) were synthesized and characterized. DGEBAEO‐6 was used to toughen the conventional epoxy resin diglycidyl ether of BPA (DGEBA). The blends of DGEBA with different amounts of DGEBAEO‐6 were cured by 4,4′‐diamino diphenylmethane (DDM), and their thermal and mechanical properties were examined. The DSC and DMA results presented that DGEBA/DGEBAEO‐6 blends exhibited a homogenous phase, and the glass transition temperature of the blends was inversely proportional to the content of DGEBAEO‐6. The impact strength of the cured blends was directly proportional to the content of DGEBAEO‐6, and reached five times higher than that of the neat DGEBA when 50 wt % DGEBAEO‐6 was used; the same impact strength was achieved for DDM‐cured DGEBAEO‐2. The viscosities of the blends decreased with increasing the DGEBAEO‐6 content, whereas the tensile and flexural strength and the thermal stabilities were not obviously affected. Scanning electron microscopic results confirmed that the plastic deformation inducing by the incorporated flexible oxyethylene units was responsible for the toughness improvement. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号