首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Process plants are operating in an increasingly global and dynamic environment, motivating the development of dynamic real‐time optimization (DRTO) systems to account for transient behavior in the determination of economically optimal operating policies. This article considers optimization of closed‐loop response dynamics at the DRTO level in a two‐layer architecture, with constrained model predictive control (MPC) applied at the regulatory control level. A simultaneous solution approach is applied to the multilevel DRTO optimization problem, in which the convex MPC optimization subproblems are replaced by their necessary and sufficient Karush–Kuhn–Tucker optimality conditions, resulting in a single‐level mathematical program with complementarity constraints. The performance of the closed‐loop DRTO strategy is compared to that of the open‐loop prediction counterpart through a multi‐part case study that considers linear dynamic systems with different characteristics. The performance of the proposed strategy is further demonstrated through application to a nonlinear polymerization reactor grade transition problem. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3896–3911, 2017  相似文献   

2.
The problem of valve stiction is addressed, which is a nonlinear friction phenomenon that causes poor performance of control loops in the process industries. A model predictive control (MPC) stiction compensation formulation is developed including detailed dynamics for a sticky valve and additional constraints on the input rate of change and actuation magnitude to reduce control loop performance degradation and to prevent the MPC from requesting physically unrealistic control actions due to stiction. Although developed with a focus on stiction, the MPC‐based compensation method presented is general and has potential to compensate for other nonlinear valve dynamics which have some similarities to those caused by stiction. Feasibility and closed‐loop stability of the proposed MPC formulation are proven for a sufficiently small sampling period when Lyapunov‐based constraints are incorporated. Using a chemical process example with an economic model predictive controller (EMPC), the selection of appropriate constraints for the proposed method is demonstrated. The example verified the incorporation of the stiction dynamics and actuation magnitude constraints in the EMPC causes it to select set‐points that the valve output can reach and causes the operating constraints to be met. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2004–2023, 2016  相似文献   

3.
In this work, we develop model predictive control (MPC) designs, which are capable of optimizing closed‐loop performance with respect to general economic considerations for a broad class of nonlinear process systems. Specifically, in the proposed designs, the economic MPC optimizes a cost function, which is related directly to desired economic considerations and is not necessarily dependent on a steady‐state—unlike conventional MPC designs. First, we consider nonlinear systems with synchronous measurement sampling and uncertain variables. The proposed economic MPC is designed via Lyapunov‐based techniques and has two different operation modes. The first operation mode corresponds to the period in which the cost function should be optimized (e.g., normal production period); and in this operation mode, the MPC maintains the closed‐loop system state within a predefined stability region and optimizes the cost function to its maximum extent. The second operation mode corresponds to operation in which the system is driven by the economic MPC to an appropriate steady‐state. In this operation mode, suitable Lyapunov‐based constraints are incorporated in the economic MPC design to guarantee that the closed‐loop system state is always bounded in the predefined stability region and is ultimately bounded in a small region containing the origin. Subsequently, we extend the results to nonlinear systems subject to asynchronous and delayed measurements and uncertain variables. Under the assumptions that there exist an upper bound on the interval between two consecutive asynchronous measurements and an upper bound on the maximum measurement delay, an economic MPC design which takes explicitly into account asynchronous and delayed measurements and enforces closed‐loop stability is proposed. All the proposed economic MPC designs are illustrated through a chemical process example and their performance and robustness are evaluated through simulations. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

4.
Performance assessment and optimisation for MPC have attracted much research interest. As a typical performance assessment benchmark, the LQG benchmark is regressed from asymmetrical points, leading to unnecessary computation and unsatisfactory regression results. To tackle this problem, an equigrid LQG benchmark was proposed for the two‐layer MPC assessment and optimisation, and the optimal setpoint for MPC was calculated to replace the experiential one. Then the LQG benchmark for sensitivity analysis was introduced. Economic performance assessment of the control system in a delayed coking furnace shows the effectiveness of the proposed approach. © 2012 Canadian Society for Chemical Engineering  相似文献   

5.
新一代的自适应模型预测控制器   总被引:1,自引:1,他引:0  
徐祖华  ZHU Yucai  赵均  钱积新 《化工学报》2008,59(5):1207-1215
提出了新一代的自适应模型预测控制器,自适应MPC控制器由MPC控制模块、在线辨识模块、性能监控模块3个模块组成,相互协调配和来实现自适应MPC控制。除了控制器功能设计以外,其余过程均可自动进行。对于新建MPC应用,首先进行多变量测试与辨识,在模型符合控制要求时,自动进入控制器投运。通过控制器性能监视发现模型不满足控制要求精度时,触发一次多变量模型测试与辨识过程,替换原有模型进行控制,保证控制器性能始终处于最佳状态。自适应MPC控制器在PTA装置上的应用表明了算法的有效性。  相似文献   

6.
Chemical process systems often need to respond to frequently changing product demands. This motivates the determination of optimal transitions, subject to specification and operational constraints. However, direct implementation of optimal input trajectories would, in general, result in offset in the presence of disturbances and plant/model mismatch. This paper considers reference trajectory optimization of processes controlled by constrained model predictive control (MPC). Consideration of the closed‐loop dynamics of the MPC‐controlled process in the reference trajectory optimization results in a multi‐level optimization problem. A solution strategy is applied in which the MPC quadratic programming subproblems are replaced by their Karush‐Kuhn‐Tucker optimality conditions, resulting in a single‐level mathematical program with complementarity constraints (MPCC). The performance of the method is illustrated through application to two case studies, the second of which considers economically optimal grade transitions in a polymerization process.  相似文献   

7.
8.
A novel combination of model predictive control (MPC) and iterative learning control (ILC), referred to learning‐type MPC (L‐MPC), is proposed for closed‐loop control in an artificial pancreatic β‐cell. The main motivation for L‐MPC is the repetitive nature of glucose‐meal‐insulin dynamics over a 24‐h period. L‐MPC learns from an individual's lifestyle, inducing the control performance to improve from day to day. The proposed method is first tested on the Adult Average subject presented in the UVa/Padova diabetes simulator. After 20 days, the blood glucose concentrations can be kept within 68–145 mg/dl when the meals are repetitive. L‐MPC can produce superior control performance compared with that achieved under MPC. In addition, L‐MPC is robust to random variations in meal sizes within ±75% of the nominal value or meal timings within ±60 min. Furthermore, the robustness of L‐MPC to subject variability is validated on Adults 1–10 in the UVa/Padova simulator. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

9.
In this article, an approach for economic performance assessment of model predictive control (MPC) system is presented. The method builds on steady-state economic optimization techniques and uses the linear quadratic Gaussian (LQG) benchmark other than conventional minimum variance control (MVC) to estimate the potential of reduction in variance. The LQG control is a more practical performance benchmark compared to MVC for performance assessment since it considers input variance and output variance, and it thus provides a desired basis for determining the theoretical maximum economic benefit potential arising from variability reduction. Combining the LQG benchmark directly with benefit potential of MPC control system, both the economic benefit and the op-timal operation condition can be obtained by solving the economic optimization problem. The proposed algorithm is illustrated by simulated example as well as application to economic performance assessment of an industrial model predictive control system.  相似文献   

10.
Economic model predictive control (EMPC) is a control scheme that combines real‐time dynamic economic process optimization with the feedback properties of model predictive control (MPC) by replacing the quadratic cost function with a general economic cost function. Almost all the recent work on EMPC involves cost functions that are time invariant (do not explicitly account for time‐varying process economics). In the present work, we focus on the development of a Lyapunov‐based EMPC (LEMPC) scheme that is formulated with an explicitly time‐varying economic cost function. First, the formulation of the proposed two‐mode LEMPC is given. Second, closed‐loop stability is proven through a theoretical treatment. Last, we demonstrate through extensive closed‐loop simulations of a chemical process that the proposed LEMPC can achieve stability with time‐varying economic cost as well as improve economic performance of the process over a conventional MPC scheme. © 2013 American Institute of Chemical Engineers AIChE J 60: 507–519, 2014  相似文献   

11.
鲁棒模型预测控制系统的评估基准   总被引:1,自引:0,他引:1  
张学莲  胡立生  曹广益 《化工学报》2008,59(7):1859-1862
在控制系统的性能评估中,基准的设计是个重要问题。将基本设计极限理论推广到模型预测控制系统(MPC),建立性能评估基准。直接考虑多输入多输出系统的频域扰动,建立输出反馈鲁棒模型预测控制器。此控制器仅仅依赖于过程参数,也是令闭环系统达到控制性能极限的基准控制器。建立了用于评估的性能指标,提出基于此基准的性能评估程序,用以评价其他模型预测控制系统的性能。数学算例证实了这一评估程序的有效性。  相似文献   

12.
A cascade control strategy is proposed to the benchmark simulation model 1 (BSM1) to enhance the treatment performance of nitrogen removal in a biological wastewater treatment plant. The proposed control approach consists of two control loops, a primary outer loop and a secondary inner loop. The method has two controllers of which the primary loop has a model predictive control (MPC) controller and the secondary loop has a proportional-integralderivative (PID) controller, which is a cascade MPC-PID controller. The primary MPC controller is to control the nitrate concentration in the effluent, and the secondary PID controller is to control the nitrate concentration in the final anoxic compartment. The proposed method controls the nitrate concentrations in the effluent as well as in the final anoxic reactor simultaneously to strictly satisfy the quality of the effluent as well as to remove the effects of disturbances more quickly by manipulating the external carbon dosage rate. Because the control performance assessment (CPA) technique has the features of determining the capability of the current controller and locating the best achievable performance, the other novelty of this paper is to suggest a relative closed-loop potential index (RCPI) which updates the CPA technology into a closed-loop cascade controller. The proposed method is compared with a cascade PID-PID control strategy and the original PID controller in BSM1 and an improved performance of the suggested cascade MPC-PID controller is obtained by using the CPA approach.  相似文献   

13.
This paper presents a new method to integrate process control with process design. The process design is based on steady‐state costs, .i.e., capital and operating costs. Control is incorporated into the design in terms of a variability cost. This term is calculated based on the non‐linear process model, represented here as a nominal linear model supplemented with model parameter uncertainty. Robust control tools are then used within the approach to assess closed‐loop robust stability and to calculate closed‐loop variability. The integrated method results in a non‐linear constrained optimization problem with an objective function that consists of the sum of the steady costs and the variability cost. Optimization using the traditional sequential approach and the new integrated method was applied to design a multi‐component distillation column using a Model Predictive Control (MPC) algorithm. The optimization results show that the integrated method can lead to significant cost savings when compared to the traditional sequential approach. In addition, an RGA analysis was performed to study the effects of process interactions on the optimization results.  相似文献   

14.
Based on Takagi–Sugeno (T–S) fuzzy models, a robust fuzzy model predictive control (MPC) algorithm is presented for a class of nonlinear time‐delay systems with input constraints. Delay‐dependent sufficient conditions for the robust stability of the closed‐loop system are derived, and the condition for the existence of the fuzzy model predictive controller is formulated in terms of nonlinear matrix inequality via the parallel distributed compensation (PDC) approach. By using a novel matrix transform technique, a receding optimization problem with linear matrix inequality (LMIs) constraints is constructed to design the desired controllers with an on‐line optimal receding horizon guaranteed cost. Finally, an example of continuous stirred tank reactors (CSTR) is given to demonstrate the effectiveness of the proposed results.  相似文献   

15.
基于证据网络的多变量MPC经济性能评估   总被引:4,自引:3,他引:1       下载免费PDF全文
张巍  王昕  王振雷 《化工学报》2012,63(11):3585-3590
MPC控制系统作为先进控制策略,已经被广泛地应用于工业生产中。但在实际工业中,MPC控制系统的变量的软约束往往设定得比较保守,使系统无法达到最优经济性能。针对有约束的MPC控制系统,采用二次型经济性能指标函数来评价系统的经济性能,将最优工作点的求解问题转化为一个典型的有约束的线性规划问题。进而根据历史数据和二次型经济性能指标函数所得最优运行结果建立多变量MPC的证据网络模型,通过证据网络的反向推理和决策,得到造成MPC控制系统性能下降的可能原因,并提出改善控制系统性能的策略。最后通过仿真实验,验证了基于证据网络的经济性能评估的有效性。  相似文献   

16.
Due to the enormous success of model predictive control (MPC) in industrial practice, the efforts to extend its application from unit-wide to plant-wide control are becoming more widespread. In general, industrial practice has tended toward a decentralized MPC architecture. Most existing MPC systems work independently of other MPC systems installed within the plant and pursue a unit/local optimal operation. Thus, a margin for plant-wide performance improvement may be available beyond what decentralized MPC can offer. Coordinating decentralized, autonomous MPC has been identified as a practical approach to improving plant-wide performance. In this work, we propose a framework for designing a coordination system for decentralized MPC which requires only minor modification to the current MPC layer. This work studies the feasibility of applying Dantzig–Wolfe decomposition to provide an on-line solution for coordinating decentralized MPC. The proposed coordinated, decentralized MPC system retains the reliability and maintainability of current distributed MPC schemes. An empirical study of the computational complexity is used to illustrate the efficiency of coordination and provide some guidelines for the application of the proposed coordination strategy. Finally, two case studies are performed to show the ease of implementation of the coordinated, decentralized MPC scheme and the resultant improvement in the plant-wide performance of the decentralized control system.  相似文献   

17.
A method for the design of distributed model predictive control (DMPC) systems for a class of switched nonlinear systems for which the mode transitions take place according to a prescribed switching schedule is presented. Under appropriate stabilizability assumptions on the existence of a set of feedback controllers that can stabilize the closed‐loop switched, nonlinear system, a cooperative DMPC architecture using Lyapunov‐based model predictive control (MPC) in which the distributed controllers carry out their calculations in parallel and communicate in an iterative fashion to compute their control actions is designed. The proposed DMPC design is applied to a nonlinear chemical process network with scheduled mode transitions and its performance and computational efficiency properties in comparison to a centralized MPC architecture are evaluated through simulations. © 2013 American Institute of Chemical Engineers AIChE J, 59:860‐871, 2013  相似文献   

18.
Being an optimizing technology, model predictive control (MPC) can now be found in a wide variety of application fields. The main and most obvious control goal to be achieved in a wastewater treatment plant is to fulfill the effluent quality standards, while minimizing the operational costs. In order to maintain the effluent quality within regulation-specified limits, the MPC strategy has been applied to the Benchmark Simulation Model 1 (BSM1) simulation benchmark of wastewater treatment process. After the discussion of open loop responses of outputs to manipulated inputs and measured influent disturbances, the strategies of feedback by linear dynamic matrix control (DMC), quadratic dynamic matrix control (QDMC) and nonlinear model predictive control (NLMPC), and improvement by feedforward based on influent flow rate or ammonium concentration have been investigated. The simulation results indicate that good performance was achieved under steady influent characteristics, especially concerning the nitrogen-related species. Compared to DMC and QDMC, NLMPC with penalty function brings little improvement. Two measured disturbances have been used for feedforward control, the influent flow rate and ammonium concentration. It is shown that the performance of feedforward with respect to the influent ammonium concentration is much higher than for the feedforward with respect to the influent flow rate. However, this latter is slightly better than the DMC feedback. The best performance is obtained by combining both feedforward controllers with respect to the influent ammonium concentration and flow rate. In all cases, the improvement of performance is correlated with more aeration energy consumption.  相似文献   

19.
In this work, we consider moving horizon state estimation (MHE)‐based model predictive control (MPC) of nonlinear systems. Specifically, we consider the Lyapunov‐based MPC (LMPC) developed in (Mhaskar et al., IEEE Trans Autom Control. 2005;50:1670–1680; Syst Control Lett. 2006;55:650–659) and the robust MHE (RMHE) developed in (Liu J, Chem Eng Sci. 2013;93:376–386). First, we focus on the case that the RMHE and the LMPC are evaluated every sampling time. An estimate of the stability region of the output control system is first established; and then sufficient conditions under which the closed‐loop system is guaranteed to be stable are derived. Subsequently, we propose a triggered implementation strategy for the RMHE‐based LMPC to reduce its computational load. The triggering condition is designed based on measurements of the output and its time derivatives. To ensure the closed‐loop stability, the formulations of the RMHE and the LMPC are also modified accordingly to account for the potential open‐loop operation. A chemical process is used to illustrate the proposed approaches. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4273–4286, 2013  相似文献   

20.
This paper presents a novel robust Model Predictive Control (MPC) method for real-time supply chain optimization under uncertainties. This method optimizes the closed-loop economic performance of supply chain systems and addresses different sources of uncertainties located external to and within the feedback loop. The future system behavior is predicted by a closed-loop model, which includes both the open-loop system model and a controller model described by an optimization problem. The robust MPC formulation involves the solution of a constrained, bi-level stochastic optimization problem, which is transformed into a tractable problem involving a limited number of deterministic conic optimization problems solved reliably using an interior point method. The robust controller is applied to a real industrial multi-echelon supply chain optimization problem, and its performance is shown to reduce stock-outs without excessive inventories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号