共查询到20条相似文献,搜索用时 0 毫秒
1.
Influence of fiber orientation and fiber content on properties of sisal‐jute‐glass fiber‐reinforced polyester composites 下载免费PDF全文
The incorporation of natural fibers with polymer matrix composites (PMCs) has increasing applications in many fields of engineering due to the growing concerns regarding the environmental impact and energy crisis. The objective of this work is to examine the effect of fiber orientation and fiber content on properties of sisal‐jute‐glass fiber‐reinforced polyester composites. In this experimental study, sisal‐jute‐glass fiber‐reinforced polyester composites are prepared with fiber orientations of 0° and 90° and fiber volume of sisal‐jute‐glass fibers are in the ratio of 40:0:60, 0:40:60, and 20:20:60 respectively, and the experiments were conducted. The results indicated that the hybrid composites had shown better performance and the fiber orientation and fiber content play major role in strength and water absorption properties. The morphological properties, internal structure, cracks, and fiber pull out of the fractured specimen during testing are also investigated by using scanning electron microscopy (SEM) analysis. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42968. 相似文献
2.
Temperature‐dependent tensile strength model for 2D woven fiber reinforced ceramic matrix composites 下载免费PDF全文
Yong Deng Weiguo Li Xiaorong Wang Haibo Kou Xuyao Zhang Jiaxing Shao Ying Li Xianhe Zhang Jianzuo Ma Yong Tao Liming Chen 《Journal of the American Ceramic Society》2018,101(11):5157-5165
This paper presents a temperature‐dependent model for predicting the tensile strength of 2D woven fiber reinforced ceramic matrix composites. The model takes into account the combined effects of temperature, temperature‐dependent residual thermal stress, temperature‐dependent matrix strength, and fibers strength on the tensile strength of composites. To verify the model, the tensile strengths of 2D woven fiber reinforced ceramic matrix composites available are predicted at different temperatures. The model predictions agree well with the experimental data. This work could provide a practical technical means for predicting the temperature‐dependent tensile strength of 2D woven fiber reinforced ceramic matrix composites and uncovering the dominated mechanisms leading to the change of tensile strength and their evolution with temperature. 相似文献
3.
In this work, the feasibility of using lignin as a compatibilizer for composites made from jute fiber fabric and polypropylene (PP) was studied. Since lignin contains polar (hydroxyl) groups and nonpolar hydrocarbon, it was expected to be able to improve the compatibility between the two components of the composite. It was found that lignin acted as β nucleation, fire retardant, and toughening agent for PP matrix. Jute composites exhibit higher stiffness, tensile strength, and impact behavior in respect to those of neat PP. Although scanning electron micrographic observations indicate that PP‐jute adhesion was slightly improved by lignin addition, additional benefits were only obtained from impact behavior. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
4.
In this research, fully environment‐friendly, sustainable and biodegradable composites were fabricated, using wheat straw and rice husk as reinforcements for thermoplastics, as an alternative to wood fibers. Mechanical properties including tensile, flexural, and impact strength properties were examined as a function of the amount of fiber and coupling agent used. In the sample preparation, three levels of fiber loading (30, 40, and 50 wt %) and two levels of coupling agent content (0 and 2 wt %) were used. As the percentage of fiber loading increased, flexural and tensile properties increased significantly. Notched Izod results showed a decrease in strength as the percentage of fiber increases. With addition of 50% fiber, the impact strengths decreased to 16.3, 14.4, and 16.4 J/m respectively, for wheat straw‐, rice husk‐, and poplar‐filled composites. In general, presence of coupling agent had a great effect on the mechanical strength properties. Wheat straw‐ and rice husk‐filled composites showed an increase in the tensile and flexural properties with the incorporation of the coupling agent. From these results, we can conclude that wheat straw and rice husk fibers can be potentially suitable raw materials for manufacturing biocomposite products. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
5.
Investigation of mechanical properties of alumina nanoparticle‐loaded hybrid glass/carbon‐fiber‐reinforced epoxy composites 下载免费PDF全文
This research work investigates the tensile strength and elastic modulus of the alumina nanoparticles, glass fiber, and carbon fiber reinforced epoxy composites. The first type composites were made by adding 1–5 wt % (in the interval of 1%) of alumina to the epoxy matrix, whereas the second and third categories of composites were made by adding 1–5 wt % short glass, carbon fibers to the matrix. A fourth type of composite has also been synthesized by incorporating both alumina particles (2 wt %) and fibers to the epoxy. Results showed that the longitudinal modulus has significantly improved because of the filler additions. Both tensile strength and modulus are further better for hybrid composites consisting both alumina particles and glass fibers or carbon fibers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39749. 相似文献
6.
Toughening effects of interleaved nylon veils on glass fabric/low‐styrene‐emission unsaturated polyester resin composites 下载免费PDF全文
The effectiveness of using interleaved nylon veils to increase the interlaminar toughness of glass fiber reinforced, low‐styrene emission unsaturated polyester resin composites has been investigated. Samples were manufactured by a hand lay‐up technique followed by compression moulding. Nylon 66 veils were used, with the veil content varying from 0% to 4% by weight. Double cantilever beam, short beam shear, and three point bend tests were performed. The increasing levels of nylon veil content improved the interlaminar toughness of the composites, which was characterized by critical strain energy release rate (GIC). The maximum GIC for crack propagation of a nylon interleaved composite increased by almost 170% over the baseline glass fiber reinforced composite. Dynamic Mechanical Analysis revealed an increase in the damping parameter of up to 117%. Image analysis via Digital Image Correlation and Scanning Electron Microscopy revealed increased fiber bridging between adjacent plies as a key reason for these improvements. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41462. 相似文献
7.
8.
Hybrid composites based on bisphenol‐C‐formaldehyde resin and jute mat with rice, wheat, sugar cane, and jamun husks have been fabricated at 150°C under 30.4 MPa pressure for 2 h. The resin content in composites was 50% of fibers. Tensile strength, flexural strength, electric strength, and volume resistivity of hybrid composites have been evaluated and compared with those of jute‐bisphenol‐C‐formaldehyde composites. It is observed that the tensile strength of composites is found to decrease by 53–72%, which is mainly due to random orientation of sandwiched fibers. Flexural strength has increased by 53–153% except jute–rice husk composite for which it is decreased by 26%. A little change in dielectric breakdown strength (1.89–2.11 kV/mm) is found but volume resistivity of Jute–wheat husk and Jute–jamun husk composites has improved by 437–197% and it is slightly decreased(2.3–25.2%) for the remaining two composites. Thus, hybrid composites possess good mechanical and electrical properties signifying their importance in low strength and light weight engineering applications as well as low cost housing units such as partition and hard boards. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1754–1758, 2006 相似文献
9.
Jacek Andrzejewski Marek Szostak Mateusz Barczewski Janusz Krasucki Tomasz Sterzynski 《应用聚合物科学杂志》2014,131(23)
The results of this work relate to the use of co‐extrusion technology in the preparation of monocomposite pellets. The low‐melting polypropylene copolymer was used as a matrix material. The high strength polypropylene fibers were used as a fibrous reinforcement. Research confirms the possibility to produce the pellets with fibrous structure. The prepared composite material in the form of pellets was processed and shaped using the injection molding technology. Obtained samples were subjected to mechanical testing in the static tensile test and dynamic mechanical analysis. Research complements microscopic observation of scanning electron microscopy. The measurement results confirm the reinforcing effect of the fibers. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41180. 相似文献
10.
The article describes the effect of structure of vinyl ester resins (VE) on the mechanical properties of neat sheets as well as glass fabric‐reinforced composites. Different samples of VE were prepared by reacting ester of hexahydrophthalic anhydride (ER) and methacrylic acid (MAA) (1 : 1 molar ratio) followed by reaction of monomethacrylate terminated epoxy resin with glutaric (E) or adipic (F) or sebacic acid (G) (2 : 1 molar ratio). The neat VE were diluted with styrene and sheets were fabricated by using a glass mold. A significant reduction in the mechanical properties was observed by increasing the methylene content of resin backbone (i.e., sample E to G). Glass fabric‐reinforced composites were fabricated by vacuum assisted resin transfer molding (VARTM) technique. Resin content in the laminates was 50 ± 5 wt %. Increase in the number of methylene groups in the vinyl ester resin (i.e., increasing the bridge length) did not show any significant effect on limiting oxygen index (LOI) value (21 ± 1) of the laminates but tensile strength, tensile modulus, flexural strength, and flexural modulus all increased though these values are significantly lower than observed in laminates based on resin B. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
11.
Biodegradable composites of poly(butylene succinate‐co‐butylene adipate) reinforced by poly(lactic acid) fibers 下载免费PDF全文
Biodegradable composites of poly(butylene succinate‐co‐butylene adipate) (PBSA) reinforced by poly(lactic acid) (PLA) fibers were developed by hot compression and characterized by Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), dynamic mechanical analyzer, and tensile testing. The results show that PBSA and PLA are immiscible, but their interface can be improved by processing conditions. In particular, their interface and the resulting mechanical properties strongly depend on processing temperature. When the temperature is below 120 °C, the bound between PBSA and PLA fiber is weak, which results in lower tensile modulus and strength. When the processing temperature is higher (greater than 160 °C), the relaxation of polymer chain destroyed the molecular orientation microstructure of the PLA fiber, which results in weakening mechanical properties of the fiber then weakening reinforcement function. Both tensile modulus and strength of the composites increased significantly, in particular for the materials reinforced by long fiber. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43530. 相似文献
12.
The world tendency toward using recycled materials demands new products from vegetable resources and waste polymers. In this work, composites made from powdered tire rubber (average particle size: 320 μm) and sisal fiber were prepared by hot‐press molding and investigated by means of dynamic mechanical thermal analysis and tensile properties. The effects of fiber length and content, chemical treatments, and temperature on dynamic mechanical and tensile properties of such composites were studied. The results showed that mercerization/acetylation treatment of the fibers improves composite performance. Under the conditions investigated the optimum fiber length obtained for the tire rubber matrix was 10 mm. Storage and loss moduli both increased with increasing fiber content. The results of this study are encouraging, demonstrating that the use of tire rubber and sisal fiber in composites offers promising potential for nonstructural applications. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 670–677, 2004 相似文献
13.
Sisal fibers were used for the reinforcement of a polypropylene (pp) matrix. Composites consisting of polypropylene reinforced with short sisal fibers were prepared by melt‐mixing and solution‐mixing methods. A large amount of fiber breakage was observed during melt mixing. The fiber breakage analysis during composite preparation by melt mixing was carried out using optical microscopy. A polynomial equation was used to model the fiber‐length distribution during melt mixing. The experimental mechanical properties of sisal/PP composites were compared with existing theoretical models such as the modified rule of mixtures, parallel and series models, the Hirsch model, and the Bowyer–Baders model. The dependence of the tensile strength on the angle of measurement with respect to fiber orientation also was modeled. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 602–611, 2003 相似文献
14.
New bio‐fiber composites (UPRC) cured by ultraviolet radiation were produced using kenaf fiber as reinforcing agent and unsaturated polyester resins as matrix in the presence of styrene and IRGACURE 1800 as photoinitiator. Unsaturated polyester resins based on palm oil were prepared from various ratios of monoglyceride (MG)/maleic anhydride (MA) by the interaction of the corresponding MG monomer, with different equivalents of MA, in the presence of 2‐methylimidazole as catalyst. The various characteristics of the obtained bio‐fiber composites, including mechanical, gel content, water absorption and thickness swelling test, thermal analysis, were determined and the data were discussed. Bio‐fiber composite with MG: MA ratio (1 : 4 eq./eq.) showed better mechanical properties (tensile, flexural, and impact strength) than other formulations. Gel content increased as the amount of MA was increased up to the MG: MA ratio was 1 : 4 (eq./eq.) then slightly decreased at the higher ratio formulation. Bio‐fiber composite (UPRCc) was considered the best prepared bio‐fiber composite which contained higher degree double bond, cross‐linking and thermal stability. Moreover, morphological study of selected examples of the formed bio‐fiber composites was also carried out and showed the evidence of the enhancement of the compatibility between fiber and polymer matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
15.
Jute–polyester composites were fabricated with untreated (control) and bleached slivers with 60% loading of fiber by weight and were designated as JPH(C) and JPH(B), respectively. Both types of composite specimens were subjected to water absorption and outdoor weathering tests to assess their relative performance under environmental conditions. While both composites showed low water absorption, JPH(B) showed lesser water absorption (8.48%) than did JPH(C) (12.25%). The mechanical properties like tensile and flexural strengths were measured for both the weathered and unweathered specimens and compared. The tensile strength of JPH(C) and JPH(B) decreased while the tensile modulus increased after weathering. The flexural strength, moduli, and ILSS of the weathered specimens were less than those of the unweathered ones. The nature of the fiber–matrix adhesion could be established from these results. The cause of every observation is explained. Thermal analyses (TG/DTG and DSC) of the composite specimens were also done. The overall thermal stability of JPH(C) was found to be better than that of JPH(B). © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1671–1679, 2000 相似文献
16.
Mohammad Washim Dewan Mohammad Kamal Hossain Mahesh Hosur Shaik Jeelani 《应用聚合物科学杂志》2013,128(6):4110-4123
A systematic study was carried out to investigate the effect of alkali treatment and nanoclay on thermomechanical properties of jute fabric reinforced polyester composites (JPC) fabricated by the vacuum‐assisted resin transfer molding (VARTM) process. Using mechanical mixing and sonication process, 1% and 2% by weight montmorillonite K10 nanoclay were dispersed into B‐440 premium polyester resin to fabricate jute fabric reinforced polyester nanocomposites. The average fiber volume was determined to be around 40% and void fraction was reduced due to the surface treatment as well as nanoclay infusion in these biocomposites. Dynamic mechanical analysis (DMA) revealed enhancement of dynamic elastic/plastic responses and glass transition temperature (Tg) in treated jute polyester composites (TJPC) and nanoclay infused TJPC compared with those of untreated jute polyester composites (UTJPC). Alkali treatment and nanoclay infusion also resulted in enhancement of mechanical properties of JPC. The maximum flexural, compression, and interlaminar shear strength (ILSS) properties were found in the 1 wt % nanoclay infused TJPC. Fourier transform‐infrared spectroscopy (FT‐IR) revealed strong interaction between the organoclay and polyester that resulted in enhanced thermomechanical properties in the composites. Lower water absorption was also observed due to surface treatment and nanoclay infusion in the TJPC. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
17.
Glass woven fabric reinforced vinyl ester (GV) composites filled with different weight proportions of silica particles were fabricated by hand lay up technique followed by oven curing. The plane strain Mode‐I Intralaminar fracture toughness, KIC of the silica filled GV composites has been studied and the experimental results were compared with those of unfilled GV composites. The findings of the experiments showed that the fracture toughness has improved by the addition of silica particles up to 6 weight % with marginal increase of tensile properties. The silica filled and unfilled GV composites showed brittle fracture, with maximum toughness for 6 weight % silica particles. The morphology of fracture surfaces was examined by using SEM. Pulled and fractured fibers are observed on the fracture surface of GV composites evidencing fiber bridging but not in the silica filled GV composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers 相似文献
18.
Fabrication and characterization of novel zirconia filled glass fiber reinforced polyester hybrid composites 下载免费PDF全文
Muhammad Azeem Munawar Shahzad Maqsood Khan Nafisa Gull Muhammad Shafiq Atif Islam Saba Zia Aneela Sabir Awais Sattar Ghouri Muhammad Taqi Zahid Butt Tahir Jamil 《应用聚合物科学杂志》2016,133(27)
Novel hybrid glass fiber reinforced polyester composites (GFRPCs) filled with 1‐5 wt % microsized zirconia (ZrO2) particles, were fabricated by hand lay‐up process followed by compression molding and evaluated their physical, mechanical and thermal behaviors. The consumption of styrene in cured GFRPCs was confirmed by Fourier transform infrared spectroscopy. The potential implementation of ZrO2 particles lessened the void contents marginally and substantially enhanced the mechanical and thermal properties in the resultant hybrid composites. The GFRPCs filled with 4 wt % ZrO2 illustrated noteworthy improvement in tensile strength (66.672 MPa) and flexural strength (67.890 MPa) while with 5 wt % ZrO2 showed 63.93% rise in hardness, respectively, as compared to unfilled GFRPCs. Physical nature of polyester matrix for composites and an improved glass transition temperature (Tg) from 103 to 112 °C was perceived by differential scanning calorimetry thermograms. Thermogravimetric analysis revealed that the thermal stability of GFRPCs was remarkably augmented with the addition of ZrO2. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43615. 相似文献
19.
The primary purpose of this study is to investigate the anisotropic behavior of different glass‐fabric‐reinforced polyester composites. Two commonly used types of traditional glass fabrics, woven roving fabric and chopped strand mat, have been used. Composite laminates have been manufactured by the vacuum infusion of polyester resin into the fabrics. The effects of geometric variables on the composite structural integrity and strength are illustrated. Hence, tensile and three‐point‐bending flexural tests have been conducted at different off‐axial angles (0, 45, and 90°) with respect to the longitudinal direction. In this study, an important practical problem with fibrous composites, the interlaminar shear strength as measured in short‐beam shear tests, is discussed. The most significant result deduced from this investigation is the strong correlation between the changes in the interlaminar shear strength values and fiber orientation angle in the case of woven fabric laminates. Extensive photographs of fractured tensile specimens resulting from a variety of uniaxial loading conditions are presented. Another aim of this work is to investigate the interaction between the glass fiber and polyester matrix. The experiments, in conjunction with scanning electron photomicrographs of fractured surfaces of composites, are interpreted in an attempt to explain the interaction between the glass fiber and polyester. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
20.
The cure characteristics and mechanical properties of short‐nylon‐fiber‐reinforced acrylonitrile–butadiene rubber composites with and without an epoxy resin as a bonding agent were studied. The epoxy resin was a good interfacial‐bonding agent for this composite system. The minimum torque showed a marginal increase with the resin concentration. The maximum–minimum torque showed only a marginal change with the resin. The scorch time decreased with the fiber concentration and resin content. The tensile strength and abrasion resistance were improved and the tear resistance and resilience were reduced with the resin concentration. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 532–539, 2006 相似文献